

EX74000 シリーズ
産業用イーサネットスイッチ
取扱説明書

HYTEC INTER Co., Ltd. 第 4 版

管理番号:TEC-00-MA0058-04

ご注意

- ▶ 本製品をご使用の際は、取扱説明書に従って正しい取り扱いをしてください。
- ▶ 本製品を分解したり改造したりすることは絶対に行わないでください。
- ▶ 本製品の故障、誤動作、不具合、あるいは天災、停電等の外部要因によって、通信などの機会を逸したために生じた損害等の純粋経済損害につきましては、当社は一切その責任を負いかねますので、あらかじめご了承ください。
- ▶ 本製品は、改良のため予告なしに仕様が変更される可能性があります。あらかじめご 了承ください。
- ▶ 本書の中に含まれる情報は、当社(ハイテクインター株式会社)の所有するものであり、 当社の同意なしに、全体または一部を複写または転載することは禁止されています。
- ▶ 本書の内容については、将来予告なしに変更することがあります。
- ▶ 本書の内容については万全を期して作成いたしましたが、万一、ご不審な点や誤り、 記載漏れなどのお気づきの点がありましたらご連絡ください。
- ▶ 付属の AC アダプタ、AC アダプタ用電源ケーブル、電源ケーブルは本製品専用となります。他の機器には接続しないでください。

改版履歷

第 1 版 2011 年 03 月 02 日	新規作成
第2版 2012年10月16日	製品ラインナップの追加
第3版 2013年11月08日	パネルマウントキット取り付け方法の修正
第 3.1 版 2015 年 03 月 04 日	付属品一覧から CD の欄を削除
第4版 2015年11月5日	FW Version "1.94.3 05/11/15 16:31:18"に対応

目次

1. 製品概要	5
2. 付属品一覧	5
3. 製品外観	6
3.1 前面部	6
3.2 背面部	8
4. スイッチの設置	9
設置スペースの確保	9
パネルマウントキット取り付け方法	10
電源投入	10
5. スイッチの設定	11
5.1 WebGUIによる設定	11
5.1.1 スイッチへのログイン	11
5.1.2 System	13
5.1.3 Diagnostics	23
5.1.4 Port	28
5.1.5 Switching	35
5.1.6. Trunking	44
5.1.7. STP / Ring	46
5.1.8. VLAN	59
5.1.9. QoS	63
5.1.10. SNMP	66
5.1.11. 802.1x	71
5.1.12. LLDP	73
5.1.13. Other Protocols	77
5.2 CLIによる設定	85
5.2.1 CLI による設定方法	85
5.2.2 ログインモード	86
5.2.3 System コマンド	89

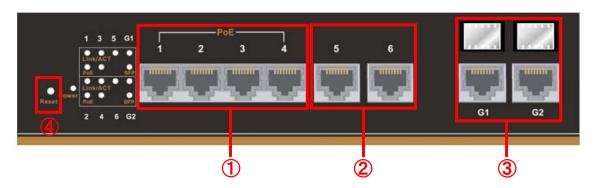
	5.2.4	Diagnostics コマンド	100
	5.2.5	Port コマンド	102
	5.2.6	Switching コマンド	107
	5.2.7	Trunk コマンド	.119
	5.2.8	STP/Ring コマンド	121
	5.2.9	VLAN コマンド	134
	5.2.10	QoS コマンド	140
	5.2.11	SNMP コマンド	144
	5.2.12	802.1X コマンド	150
	5.2.13	LLDP コマンド	153
	5.2.14.	GVRP コマンド	157
	5.2.15.	IGMP コマンド	160
	5.2.16.	NTP 関連コマンド	164
	5.2.17.	DHCP 関連コマンド	167
5	.3 SNM	MP による管理	.171
6.	製品	仕様	175
7.	製品	保証	181

1. 製品概要

EX74000シリーズは、RJ-45ポート(10/100BASE-TX)を6ポート、Combo ポート(1000BASE-T & 1000BASE-X SFP) を2ポート持ち、-40~+75°Cの広い動作温度に対応した産業用イーサネットスイッチです。

Port1~4は EX74162-0VT では、IEEE 802.3af 準拠の PoE(Power over Ethernet)に対応し、EX74262-0VT では、IEEE 802.3at 準拠の PoE +(Power over Ethernet Plus)に対応しており、PSE(Power Sourcing Equipment)として PD 機器(Powered Device)に電源を供給することができます。

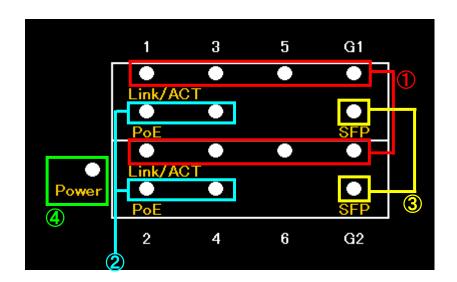
また、SFP ポートは、DDM(Digital Diagnostic Monitoring)に対応し、リアルタイムで動作状態を監視することができます。


2. 付属品一覧

ご使用いただく前に本体と付属品を確認してください。万一、不足の品がありましたら、お手数ですがお買い上げの販売店までご連絡ください。

名 称	数量
パネルマウントキット	4個
パネルマウントキット用ねじ	8本
RS-232 ケーブル	1 本

3. 製品外観


3.1 前面部

番号	説明			
	【RJ-45 ホ	?— \]		
1	•10/100BASE-TX		・オートネゴシエーション	
	・オート MDI/MDI-X		・フローコントロール	
	•PoE(Power over Ethernet)			
	※ EX74062-0VT は PoE 非対応			
	【RJ-45 ポート】			
2	•10/100BASE-TX		・オートネゴシエーション	
	・オート MDI/MDI-X ・フローコントロール		・フローコントロール	
		【RJ-45 ポート】		
		・1000BASE-T・オートネゴシエーション		
3	Combo	・オート MDI/MDI-X ・フローコントロール		
	ポート	【SFP ポート】		
		•1000BASE-X (SX/LX/BX)		
		•DDM (Digital Diagnostic Monitoring)		
4	【リセットオ	セットボタン】		

※ 本体動作時にリセットボタンを 5 秒以上押下すると、Password がリセットされます。

本体前面部には、状態を確認できる LED があり、以下のようになっています。

番号	名称	状態	説明	
1	Link/ACT	消灯	RJ-45 ポートで接続が行われていません。	
		点灯	RJ-45 ポートで接続が行われています。	
		点滅	データの送受信が行われています。	
3	② PoE	消灯	PD 機器が接続されていません。	
		POE	点灯	PD 機器が接続されています。
3 si	SFP	消灯	SFP が接続されていません。	
		点灯	SFP が接続されています。	
		点滅	データの送受信が行われています。	
4	Power	消灯	本体に電源が供給されていません。	
		点灯	本体に電源が供給されています。	

3.2 背面部

本体背面部には、コンソールポートと電源入力端子があります。

■電源端子

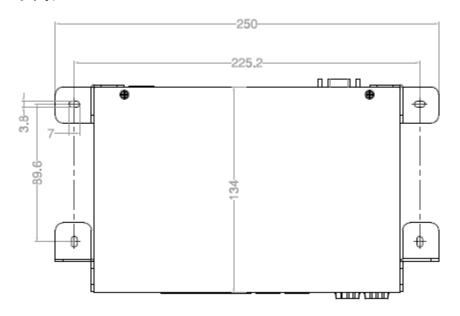
電源入力端子			
Damas	+	DC 47 - 55V	
Power	_	パワーグラウンド	DC 電源ターミナルブロック
		フレームグラウンド	

※ ターミナルブロックには、AWG12(2.053mm)~24(0.5106mm)のケーブルを使用して下さい。

4. スイッチの設置

本章では、本製品の設置方法について説明します。

設置スペースの確保


下記条件を満たす場所に設置されることを推奨します。

- ・ 温度範囲:-40~+75℃
- ・ 湿度:95%以下(結露なきこと)
- ・ 本体側面にある通気口を塞がない設置方法

パネルマウントキット取り付け方法

付属品のパネルマウントキットを使用して、壁などの平らな面に確実に設置することが出来ます。

本体の側面と背面にあるねじ穴に付属品のねじを使用してパネルマウントキットを取り付けてください。(パネルマウントキット取り付け箇所のねじ穴にはあらかじめ、取り付け用ねじが付いています。)

電源投入

- · DC 電源入力(DC47-55V)
- 1. 電源コードを本体ターミナルブロックに接続し、DC 電源に繋ぎます。
- 2. 本体の電源をオフにする場合、ターミナルブロックを摘み引き抜きます。

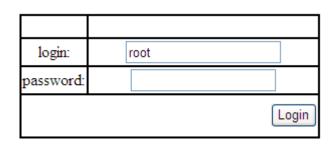
5. スイッチの設定

本章では下記によるスイッチの設定方法について説明します。

- WebGUIによる設定
- CLI による設定
- SNMP による設定

5.1 WebGUIによる設定

ブラウザによるスイッチ設定方法について説明します。

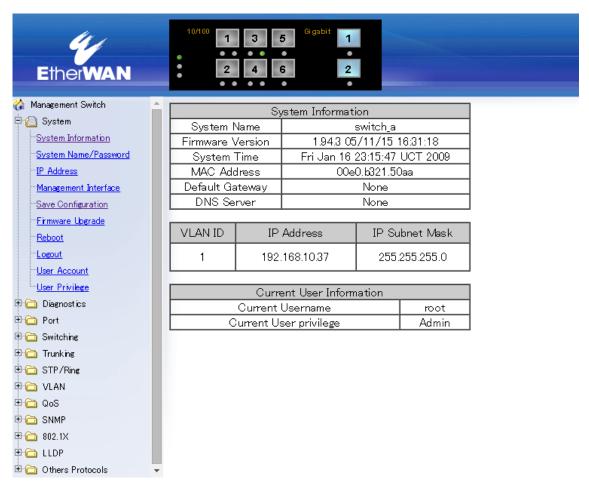

ログイン後、画面左側のフォルダを選択してクリックし、スイッチの設定および状態確認が行えます。

5.1.1 スイッチへのログイン

下記の情報(初期値)をブラウザへ入力してスイッチへログインします。

➤ IP アドレス: 192.168.1.10

Login:rootPassword:なし


ログインに成功すると System information の画面が表示されます。

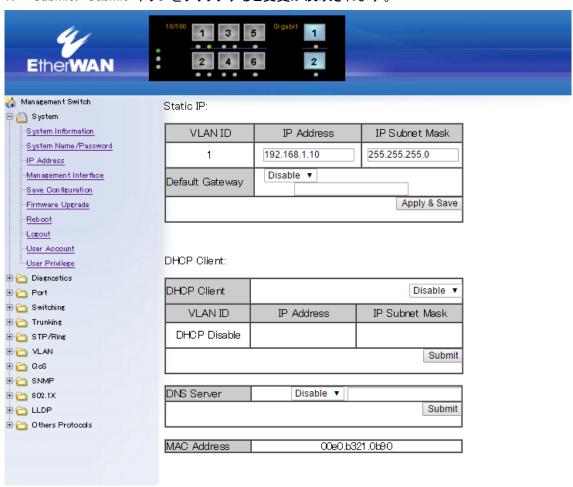
5.1.2 System

System Information

スイッチに設定されている System name (システム名)、Firmware version (ファームウェアバージョン)、System time (内部時間)、MAC address (MAC アドレス)、Default gateway (デフォルトゲートウェイ)、DNS Server (DNS サーバ)、VLAN ID、IP Address (IP アドレス)、および IP Subnet Mask (IP サブネットマスク)を表示します。

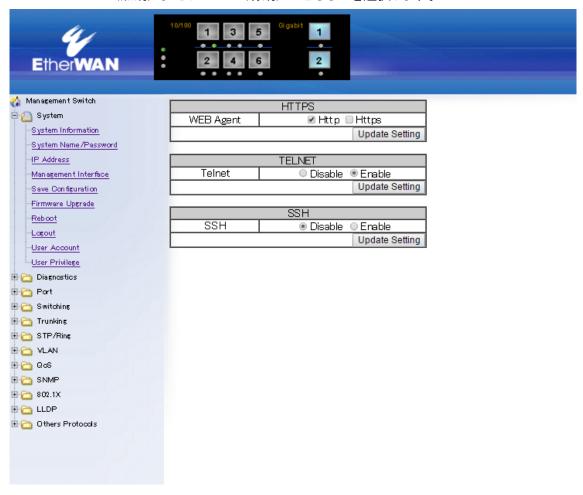
System Name/Password

スイッチ名の設定とパスワードの変更を行います。


- 1. System Name:スイッチ名を変更する場合、"System Name"欄へ任意の半角英数記号(アルファベットで始まる 63 文字まで)を入力します。
- 2. Updating setting: "Updating setting"をクリックすると設定が更新されます。
- 3. Password:パスワードを変更する場合、"Password"欄へ任意の半角英数字を入力します。
- 4. Retype Password:テキストボックス"Retype Password"欄へ"Password"で入力した同じ文字 列を入力し、"Updating setting"をクリックすると設定が更新されます。

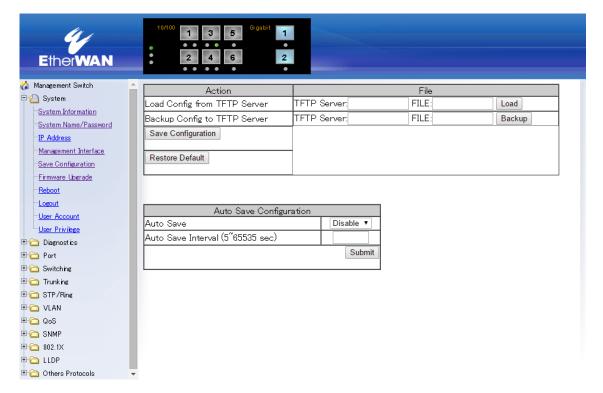
IP Address

スイッチ本体の IP アドレス、サブネットマスク、デフォルトゲートウェイの設定を行います。


- 1. IP Address: IP アドレスを変更する場合、"IP Address"欄へ新しい IP アドレスを入力します。
- 2. IP Subnet Mask:サブネットマスクを変更する場合、"IP Subnet Mask"欄へ新しいマスクを入力します。
- 3. Default Gateway:ドロップダウンメニューから"Disable"または"Enable"のいずれかを選択し、 デフォルトゲートウェイ機能を無効/有効化します。
 - "Enable(有効)"を選択した場合、右欄へゲートウェイアドレスを入力します。
- 4. Apply & Save: "Apply & Save"ボタンをクリックすると設定の変更と保存を行います。
- 5. DHCP Client: "Disable" または"Enable"を選択します。
- 6. DNS Server: "Disable"または"Enable"を選択します。
 "Enable(有効)"を選択した場合、右欄へ参照する DNS サーバ IP アドレスを入力します。
- 7. Submit: "Submit"ボタンをクリックすると変更が反映されます。

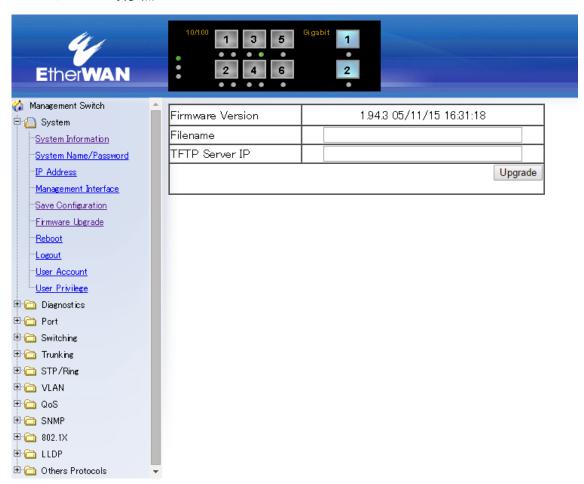
Management Interface

各管理機能の有効/無効の設定を行います。


- 1. WEB Agent: "Http"と"Https"が選択出来ます。
- 2. TELNET: "Disable(無効)"または"Enable(有効)"のどちらかを選択します。
- 3. SSH: "Disable(無効)"または"Enable(有効)"のどちらかを選択します。

Save Configuration

スイッチの設定(コンフィグファイル)のバックアップ、リストアを行います。


- 1. Load config from TFTP server:コンフィグリストアをする場合、TFTP サーバの IP アドレスを入力し、"FILE"欄へサーバに保存されているコンフィグファイル名を入力します。 "Load"ボタンをクリックするとファイルを読み込みます。
- 2. Backup config to TFTP server:コンフィグバックアップをする場合、"TFTP Server"欄へ、ファイルバックアップ先の TFTP サーバの IP アドレスを入力し、"FILE"欄へ任意のファイル名を入力します。"Backup"ボタンをクリックするとコンフィグファイルが保存されます。
- 3. Save Configuration: "Save Configuration"ボタンをクリックすると 1.の設定内容がスイッチへ 保存されます。
- 4. Restore Default: 初期設定状態へ戻す場合、"Restore Default"ボタンをクリックします。
- 5. Auto save:ドロップダウンメニューから"Disable(無効)"または"Enable(有効)"のいずれかを選択し、設定の自動保存機能を無効化または有効化します。
- 6. Auto save interval(5~65536): 設定を自動保存する間隔(5~65536(秒))を入力します。
- 7. Submit: "Submit"ボタンをクリックすると設定が反映されます。

Firmware Upgrade

スイッチのファームウェアのアップグレードを行います。


- 1. Filename:ファームウェアのファイル名を入力します。
- 2. TFTP server IP: ファイル取得先の TFTP サーバの IP アドレスを入力します。
- 3. Upgrade:ボタンをクリックするとファームウェアのアップグレードを実行します。アップグレード の途中で電源をオフにしたり、他の機能を使用したりしないでください。
- 4. 次のメッセージ(Firmware upgrade success!)の表示後、スイッチを再起動後アップグレード完了です。
 - ※ Reboot 項参照

Reboot

スイッチの再起動を行います。

Reboot: "Reboot"ボタンをクリックするとスイッチ本体を再起動します。

Logout

WebGUI から Logout します。

Logout: "Logout"ボタンをクリックすると、WebGUI からログアウトします。

User Account

ユーザアカウントの設定を行います。

- 1. Mode: "Single-User"または"Multi-User"を選択します。
- 2. Update Setting: "Update Setting"ボタンをクリックして設定を反映します。
- 3. User Account: 既存のユーザ名を選択した場合はパラメータの編集を行い、"Create"を選択した場合は新規ユーザを作成します。
- 4. User Name: ユーザ名を設定します。
- 5. Password:パスワードを設定します。
- 6. Confirm Password:確認のため、再度パスワードを入力します。
- 7. Privilege Level: ユーザに与える権限を設定します。
- 8. Update: "Update"ボタンをクリックして設定を反映します。

User Privilege

- ユーザのアクセス権限の設定を行います。
- 1. Admin: Admin 権限を持たせたユーザは全ての設定に対してアクセス権限があります。
- 2. Technician: Technician 権限を持っているユーザへのアクセス権限を設定します。
- 3. Operator: Operator 権限を持っているユーザへのアクセス権限を設定します。
- 4. Update: "Update"ボタンをクリックして設定を反映します。

5.1.3 Diagnostics

Utilization

スイッチの CPU 使用率/メモリ使用率を確認します。

System Log

システムログを表示します。

Remote Logging

Syslog サーバヘシステムログを転送する際の設定を行います。

- 1. Status: "Enable(有効)"もしくは"Disable(無効)"を選択します。
- 2. Syslog Server IP: Syslog Server の IP アドレスを入力し、"Add Syslog Server"をクリックします。
- 3. Syslog Server IP List:登録している Syslog Server のリストを確認し、リストから削除する場合は"Delete Syslog Server"をクリックします。

ARP Table

スイッチに登録されている ARP Table を表示します。

Route Table

スイッチに登録されている Route Table を表示します。

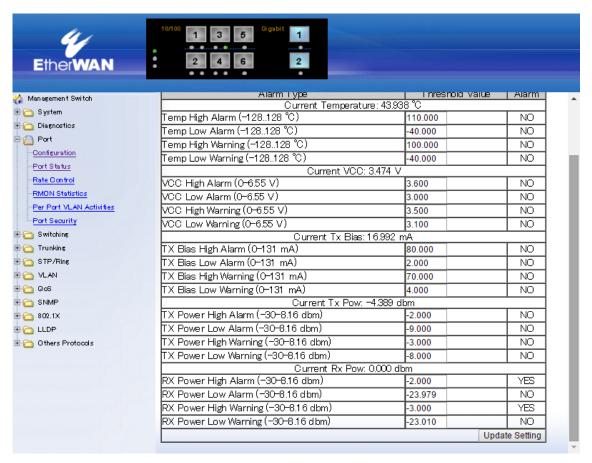
5.1.4 Port

Configuration

ポートの有効化/無効化、ネゴシエーション、フロー制御の設定を行います。

- 1. Admin Setting: "Link down"または"Link up"を選択し、各ポートを無効化/有効化します。
- 2. Speed: ドロップダウンメニューをクリックし、各ポートのオートネゴシエーション(Auto)または 固定速度を選択します。
- 3. Flow control: "Disable"または"Enable"を選択し、各ポートのフロー制御を無効化または有効化します。
- 4. Submit:ボタンをクリックすると変更が反映されます。

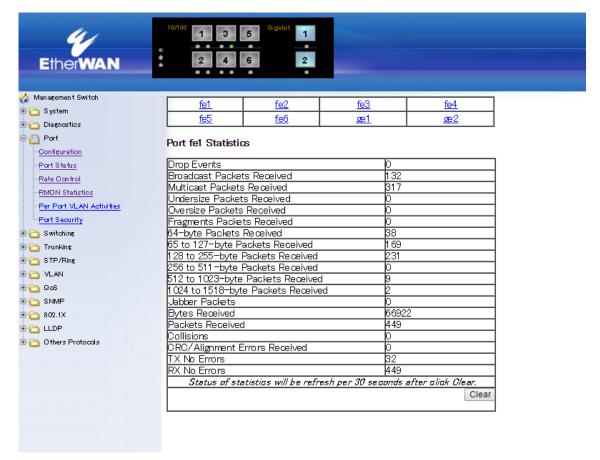
Port Status


ポートの状態(リンク状態、速度、全・半二重)およびフロー制御の有効/無効、SFPポートの状態を確認します。

SFP Port Alarm Setting

SFP ポートに接続されているモジュールの内部温度、電源電圧、送信出力、受信出力に対してアラームの閾値を設定することができます。それぞれの値が閾値を超える、又は下回る場合は、画面右の Alarm 項目の表示が"YES"に変わります。

※WebGUIでのみ確認が可能です。

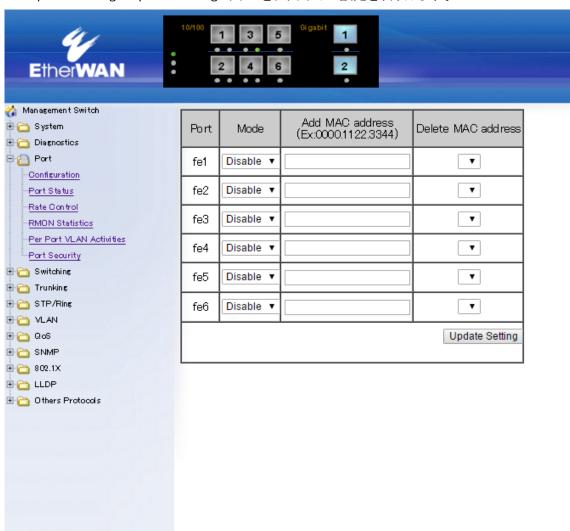

Rate Control

- 1. Ingress: 各ポートへ入力トラフィックのシェーピング(64-1000000kbps)を行います。
 - ※ 1792K 以下の場合、64k 単位の倍数で設定します。 また、2048k 以上の場合、1024k 単位の倍数で設定してください。
- 2. Egress: 各ポートの"Egress"欄へ出力トラフィックに対してシェーピングを行います。
- 3. Update setting: "Update setting"ボタンをクリックすると変更が反映されます。

RMON Statistic

各ポート(fe1~fe6 もしくは ge1~ge2 を選択)の RMON 統計情報を表示します。

Per Port VLAN Activities


各ポート(Port1~Port8 を選択)の VLAN 情報を表示します。

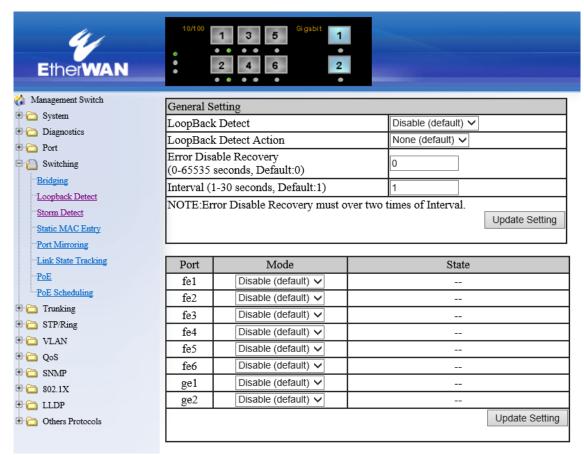
Port Security

各ポート(fe1~fe6)に対して、通信を許可する MAC アドレスを登録します。

- 1. Mode: "Disable"または"Enable"を選択します。
- 2. Add MAC address: 通信を許可する MAC アドレスを登録します。
- 3. Delete MAC address: 登録済みの MAC アドレスの削除を行います。
- 4. Update Setting: "Update Setting"ボタンをクリックして設定を反映します。

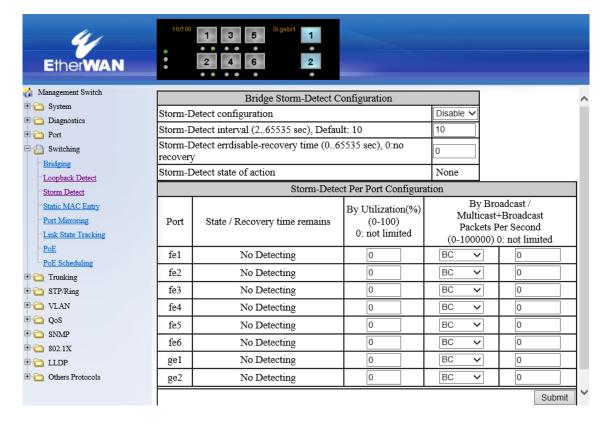
5.1.5 Switching

Bridging


- Aging Time (seconds): MAC アドレステーブルのエージング (更新)時間を秒単位 (10-1,000,000)で入力します。
- 2. Update setting: 設定変更を反映します。
- 3. Threshold level (0.1-100): 各ポートで許容する"Broadcast"および/または"DLF-Multicast" (DLF=Destination Lookup Failure 宛先不明マルチキャスト)をパーセント単位で上限閾値を設定します。
- 4. Storm-control enabled type:上記の閾値を適用するパケット種別"Broadcast"および/または "DLF-Multicast"を選択します。
- 5. Port Isolation: "Enable"もしくは"Disable"を選択します。
 Enable に設定したポート同士の通信を遮断することが出来ます。
- 6. Update Setting: "Update Setting"ボタンをクリックすると 3,4 の設定が反映されます。

Loopback Detect

ループバック検出機能の設定を行います。


- 1. LoopBack Detect:ループバック検出機能の"Disable(無効)"もしくは"Enable(有効)"を選択します。
- LoopBack Detect Action: ループバックを検出した際の動作を"None"もしくは"Error Disable" から選択します。
 - "Error Disable"を選択した場合、ループバックが検出されたポートをシャットダウンします。
- 3. Error Disable Recovery: LoopBack Detect Action にて"Error Disable"を選択し、ループバック 検出によるポートシャットダウンが行われた後、何秒後にポートを復帰させるかを設定します。
 - "0"を入力した場合は自動復帰せず、"Port Configuration"にて手動でポートを復帰させる必要があります。
- 4. Interval: ループバック検出を行う間隔を設定します。
- 5. Mode:ポート毎にループバック検出の"Disable(無効)"もしくは"Enable(有効)"を選択します。
- 6. Update Setting: "Update Setting"ボタンをクリックすると設定が反映されます。

Storm Detect

ストーム検出機能の設定を行います。

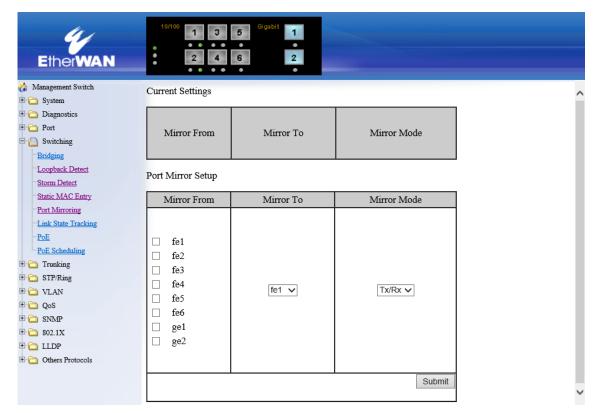
- 1. Storm Detect configuration:ストーム検出機能の"Disable(無効)"もしくは"Enable(有効)"を選択します。
- 2. Storm Detect interval:ストーム検出を行う間隔を設定します。
- 3. Storm Detect errdisable-recovery time:ストーム検出によるポートシャットダウンが行われた後、何秒後にポートを復帰させるかを設定します。
 - "0"を入力した場合は自動復帰せず、"Port Configuration"にて手動でポートを復帰させる必要があります。
- 4. By Utilization:ブロードキャスト/マルチキャストが各ポートでどのくらいの使用率(%)に達するとポートシャットダウンを行うか設定します。
- 5. By Broadcast / Multicast + Broadcast Packets Per Second: 1 秒間に何パケットのブロードキャスト/マルチキャストが流れたらポートシャットダウンするかを設定します。
- 6. Submit: "Submit"ボタンをクリックすると設定が反映されます。

Static MAC Entry

Static-MAC-Entry Forward:

- 1. Add MAC address: 各ポートで許可する MAC アドレスを入力します。
 (ア) ここで登録した送信元 MAC アドレスからのデータのみ転送されます。
- 2. VLAN ID: 各ポートの所属する VLAN ID をリストから選択します。
- 3. Submit:ボタンをクリックして設定を反映します。
- 4. Delete MAC address: リストから登録を解除する MAC アドレスを選択します。
- 5. Submit:ボタンをクリックして設定を反映します。

Static-MAC-Entry Discard:


- 1. Add MAC address: 各ポートで拒否する MAC アドレスを入力します。
 (ア) ここで登録した送信元 MAC アドレス以外のデータのみ転送されます。
- 2. VLAN ID:各ポートの所属する VLAN ID をリストから選択します。
- 3. Submit:ボタンをクリックして設定を反映します。
- 4. Delete MAC address: リストから登録を解除する MAC アドレスを選択します。
- 5. Submit: ボタンをクリックして設定を反映します。

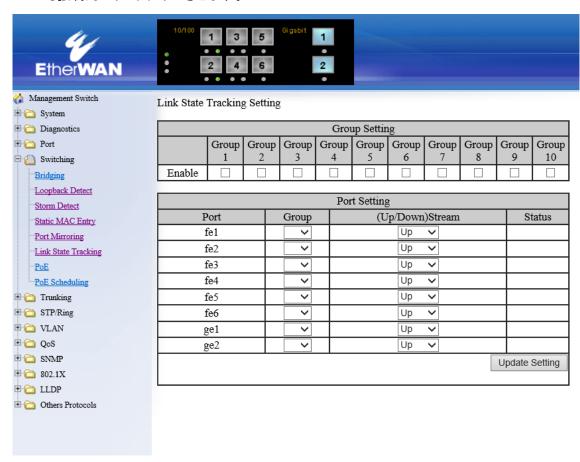
Port Mirroring

ポートミラーリング(複製)の設定を行います。

- 1. Mirror From: fe1~fe6、ge1~ge2 から送受信データの複製元となるポートを選択します。
- 2. Mirror To:fe1~fe6、ge1~ge2 から送受信データの複製先となるポートを選択します。
- Mirror Mode:複製するデータ"Tx/Rx(送受信)"、"Tx(送信のみ)"、または"Rx(受信のみ)" のいずれかを選択します。
- 4. Submit:ボタンをクリックして設定を反映します。

Link State Tracking

リンクステートトラッキングの設定を行います。スイッチ上で指定した上位リンクで障害が発生すると、同じグループの下位リンクも強制的にダウンさせることが出来ます。


Group Setting

1. Group Setting: リンクステートトラッキングを有効にするグループにチェックを入れます。

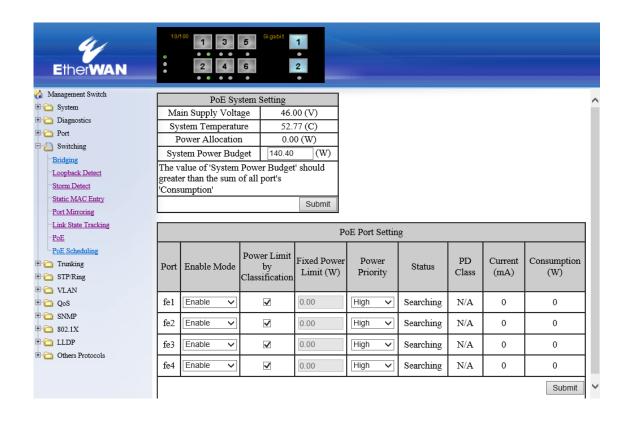
Port Setting

- 2. Group:ポートを所属させるグループを選択します。
- 3. (Up/Down)Stream:ポートが Up Stream(上位リンク)なのか、Down Stream(下位リンク)なのかを選択します。

"Up" Stream ポートがリンクダウンした際、同じグループに所属している"Down" Stream ポートも強制的にリンクダウンさせます。

PoE [74162-0VT/74262-0VT のみ]

PoE System Setting:


- 1. System Power Budget:スイッチのパワーバジェット(受電装置に対する総消費電力量)を "1-800(W)"を入力します。
- 2. Submit:ボタンをクリックして設定を反映します。

PoE Port Setting:

- 1. Enable Mode: "Disable"または"Enable"を選択し、ポートに接続されている受電装置(以下、PD)を探知する機能を無効または有効にします。
- 2. Power Limit by Classification: チェックした場合、PD クラス別に電力を供給します。

IEEE クラス	PSE 側出力	PD 側入力電力	
0	15.4 W	0.44 ~ 12.95 W	
1	4.0 W	0.44 ~ 3.84 W	
2	7.0 W	3.84 ~ 6.49 W	
3	15.4 W	6.49 ~ 12.95 W	
4	30 W	12.95W ~ 25.5W	

- 3. Fixed Power Limit(W): 供給電力量(0-30W)を入力して該当するポートの PD への給電を行います。
 - ※1. "Power Limit by Classification"を設定している場合、"Fixed Power Limit(W)"は選択できません。
 - ※2. EX74162-0VT の場合は、0-15.4W の範囲で入力します。
- 4. Power Priority:各ポートへの給電優先度を"High(高)"、"Medium(中)"、"Low(低)"のいずれかに設定します。
- 5. Submit:ボタンをクリックして設定を反映します。

PoE Scheduling [74162-0VT/74262-0VT のみ]

各ポートに接続されている PD へここで設定した曜日・時間単位で電源供給を行うことができます。この設定を行うポートに対して事前に下記設定をしてください。

- 1. "Switching"⇒"PoE"を選択します。
- 2. 該当ポートの"Enable Mode"欄から "scheduling"を選択し、"Submit"ボタンにて設定を反映します。

PoE Per Port Setting:

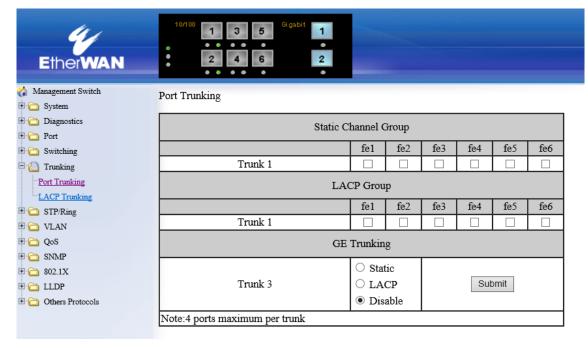
- 3. Port:選択したポートに PoE スケジューリング機能を適用します。
- 4. Submit: "Submit"ボタンにて設定を反映します。

5.1.6. Trunking

複数のスイッチと接続する際の冗長性を、独自の Trunking 機能で実現します

※ Trunking は、通信の増速ではなく、冗長化を目的としています。また、Trunk したポートのうち、トラフィックを流すポートの選定は、MAC アドレスと IP アドレスを計算の上で行われ、手動で設定することはできません。

Port Trunking


ポートトランキングの設定を行います。

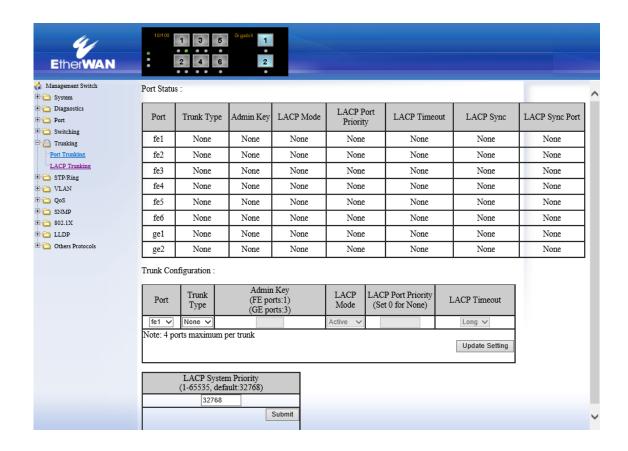
Static Channel Group:

- 1. Trunk 1:fe1~fe6 の中から同一トランクグループへ所属するポート(最大 4 ポート)をチェックします。
- 2. Submit:ボタンをクリックして設定を反映します。

GE Trunking:

- 1. Trunk 3: ギガビットイーサネット x2 ポートの Trunk を"Static" (有効化)または"Disable" (無効化)します。
- 2. Submit:ボタンをクリックして設定を反映します。

LACP Trunking


LACP ベースのポートトランキングの設定を行います。

Port Status:

LACP のポートステータスを確認します。

Trunk Configuration:

- 1. Port: 設定を変更するポートを選択します。
- 2. Trunk Type:ポートトランキングのタイプを設定します。
- 3. Admin Key: LACP で使用する鍵のもととなる"Admin Key"を設定します。
- 4. LACP Mode: LACP 動作モードを選択します。
- 5. LACP Port Priority:ポート優先度を設定します。値が小さいほど優先度は高くなります。
- 6. LACP Timeout: LACP タイムアウトを設定します。
- 7. Update Setting: "Update Setting"ボタンをクリックして設定を反映します。
- 8. LACP System Priority:システムプライオリティを設定します。
- 9. Submit: "Submit"ボタンをクリックして、"LACP System Priority"の設定を反映します。

5.1.7. STP / Ring

Global Configuration

Status:

現在の設定が表示されます。

Setting:

- 1. Spanning Tree Protocol: "Enable"または"Disable"を選択し、スパニングツリープロトコルを有効化または無効化します。
- 2. Bridge Priority (0..61440):ブリッジプライオリティ(0 61440)を設定します。
- 3. Hello Time(sec)(1..9):BPDU 送信間隔(1-9 秒)を設定します。
- 4. Max Age(sec)(6..28): ルートブリッジから BPDU が届かなくなったことを認識するまでの時間 を(6-28 秒)の間で設定します。
- 5. Forward Delay(sec)(4..30):ポートの状態遷移(Listening⇒Learning、Learning⇒Forwarding) 時間(4-30 秒)を設定します。
- 6. STP Version:スパニングツリープロトコル"MSTP"、"RSTP"、または"STP compatible"を選択します。
- 7. Update Setting:ボタンをクリックして設定を反映します。

RSTP Port Setting

RSTP Port Configuration:

- 1. 前述の"Global Configuration⇒STP Version"にて"RSTP"へ設定します。
- 2. Port: Port1 から Port8 の間からポートを選択します。
- Priority(Granularity 16):プライオリティ(0-240)を16の倍数で設定します。数値が低いほど、 優先度が高くなります(優先的に Forwarding ポートとなる)。
 初期値は128です。
- Admin. Path Cost:パスコスト(0-2000000)を設定します。数値が低いほど、優先度が高くなります(優先的に Forwarding ポートとなる)。

初期値: 100Mbps=200000 1Gbps=20000

5. Point to Point Link:下記を選択し、該当するポートのリンクタイプを設定します。IEEE802.1w (RSTP)による高速トポロジ変更は、スイッチ間接続が Point-to-Point である必要があります。

Enabled: Point-to-Point 接続されているポートへ設定します。

Disabled:半二重ポート接続されているポートへ設定します。

- 6. Edge Port:エッジポート(端末直結ポート)の設定を"Enable(有効)"、"Disable(無効)"、または"Auto(自動判別)"から選択します。
- 7. Update setting: ボタンをクリックして設定を反映します。

MSTP Properties

MST は、複数の VLAN を1つのスパニングツリーにマッピングすることで、負荷分散が可能であるのと同時にインスタンスの数を減すことにより、ネットワークリソース消費を軽減できます。

- 1. 前述の"Global Configuration⇒STP Version"にて"MSTP"へ設定します。
- 2. Region Name: MST リージョン名を付与します。

初期値: スイッチの MAC アドレス(MST リージョン内スイッチ=1 台)

3. Revision Level: MST コンフィグへ番号を付与します。

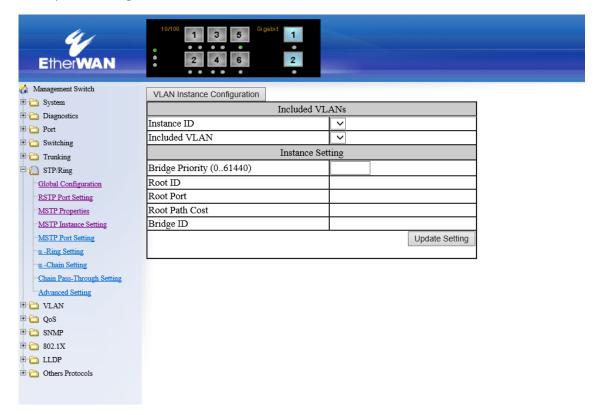
初期値: 0

- 4. Max Hops: MST リージョン内において BPDU が伝播される最大 Hop 数を設定します。BPDU の最大 Hop 数を指定することで、BPDU のループを防ぎます。スイッチが Hop 数以上の MST BPDU を受信した場合、その BPDU は破棄されます。
- 5. Upgrade setting:ボタンをクリックして設定を反映します。

MSTP Instance Setting

VLAN Instance Configuration:

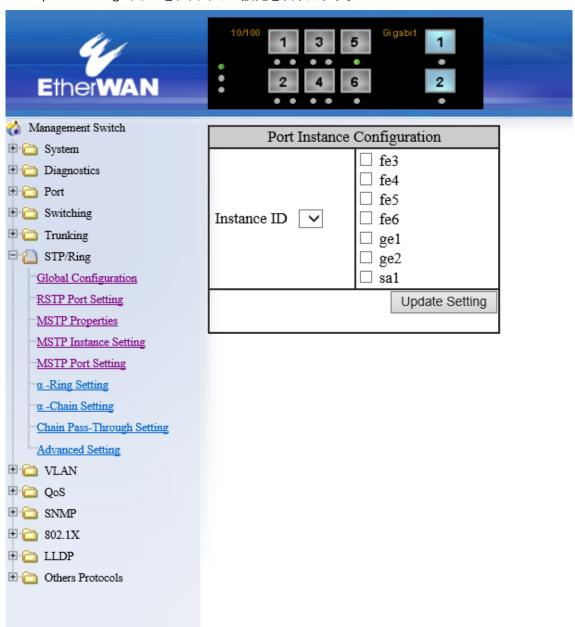
- 1. VLAN ID:リストから VLAN を選択します。
 - ※ 事前に VLAN を登録しておく必要があります。
- 2. Instance ID(1..15): 上記で選択した VLAN をここで指定するインスタンス ID へ設定(マッピング)します。
- 3. Update setting:ボタンをクリックして設定を反映します。



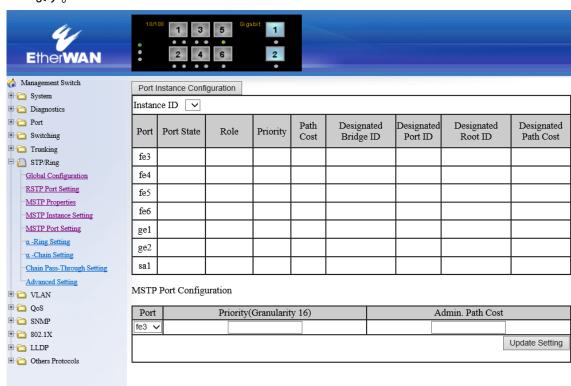
Included VLANs:

- 1. Instance ID: インスタンス ID を選択します。
- 2. Included VLAN: インスタンスへマッピングされた VLAN リストが表示されます。

Instance Setting:

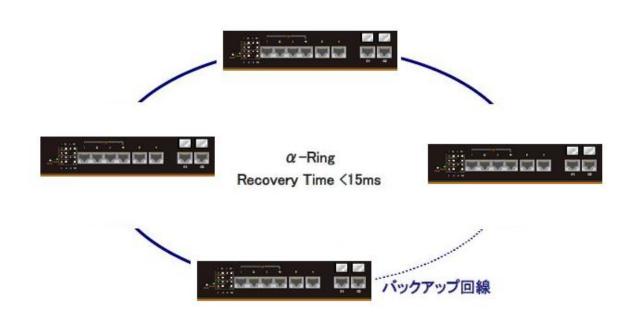

- 1. Bridge Priority(0..61440):上記で指定したMSTインスタンス内でのブリッジ優先度を付与します。優先度が低いほど、ルートブリッジとなる確率が高くなります。 4096の倍数のみ設定可能です。
- 2. Update setting:ボタンをクリックして設定を反映します。

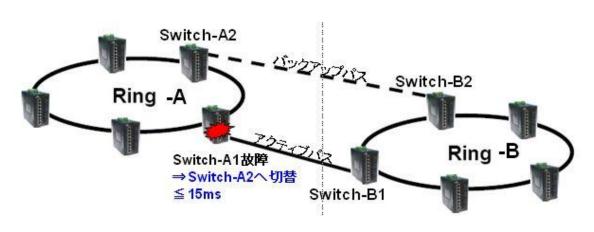
MSTP Port Setting


Port Instance Configuration:

- 1. Port Instance Configuration:ボタンを押し、各ポートとインスタンスのマッピングを行います。
- 2. Instance ID: リストからインスタンス ID を選択します。
- 3. 選択したインスタンス ID ヘマッピングするポート(Port1~Port8)をチェックします。
- 4. Update setting:ボタンをクリックして設定を反映します。

MSTP Port Configuration:


- 1. Port:ポートを選択します。
- 2. Priority(Granularity 16): ブリッジグループのポートの優先順位を設定します。複数の Spanning Tree Protocol は、ポートプライオリティを tiebreaker としてどの LAN ポートが特定の 状況でフレームを転送するか、またどのポートがルートポートとなるか決定します。値が低い ほど優先順位は高いです。優先順位が同じである場合、インターフェースインデックスを tiebreaker として機能し、低い数字のインタフェースの優先順位が高くなります。可能な範囲 は 0 から 240 で、値は 16 の倍数のみ設定できます。
- 3. Admin. Path Cost:テキストボックス"Admin. Path Cost"をクリックし、インタフェースと関連しているパスのコストを設定します。
- 4. Update Setting: MSTP Port Setting の設定が完了したら、"Update setting"ボタンをクリックします。


α -Ring Setting

STPとRSTPでは実現できなかったリンク断からの迅速なネットワークの復旧(15ms以下)を独自の α -Ringプロトコルにて実現します。また、最大300台 * までリング構成による接続が可能です。 ※ 理論値

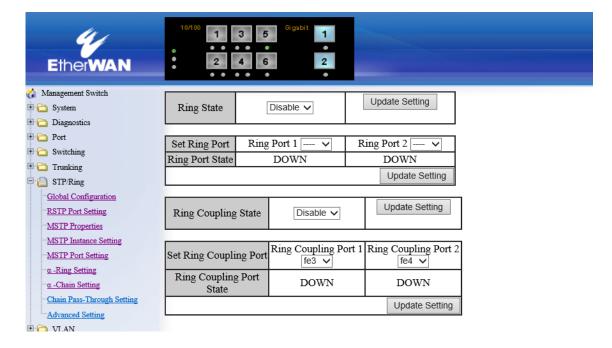
■リング構成例

■Ring-Coupling構成例

Ring state:

- 1. リング機能の"Enable"(有効化)または"Disable"(無効化)を選択します。
- 2. Update setting:ボタンをクリックして設定を反映します。

Set ring port:

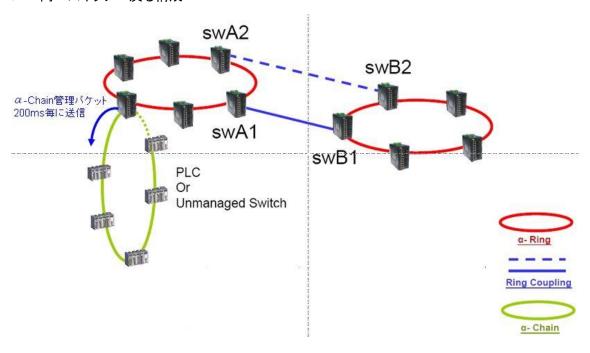

- 1. Ring port1:リングを形成するポートを選択します。
- 2. Ring port2:リングを形成するポートを選択します。
- 3. Update setting: ボタンをクリックして設定を反映します。

Ring-Coupling state:

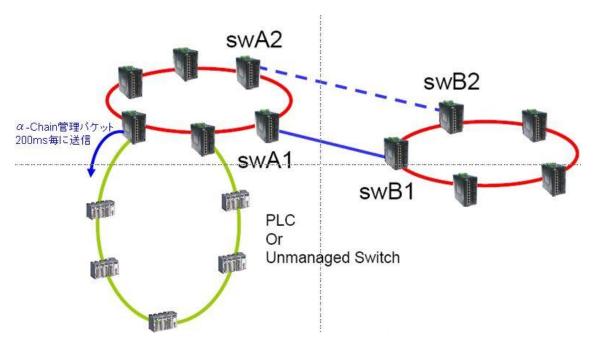
- 1. Ring-Coupling 機能の"Enable"(有効化)または"Disable"(無効化)を選択します。
- 2. Update setting: ボタンをクリックして設定を反映します。
- ※α -Ring が有効化されている必要があります。

Set ring-coupling port:

- 1. Ring port1: Ring-Coupling を構成するポートを選択します。
- 2. Ring port2: Ring-Coupling を構成するポートを選択します。
- 3. Update setting: ボタンをクリックして設定を反映します。

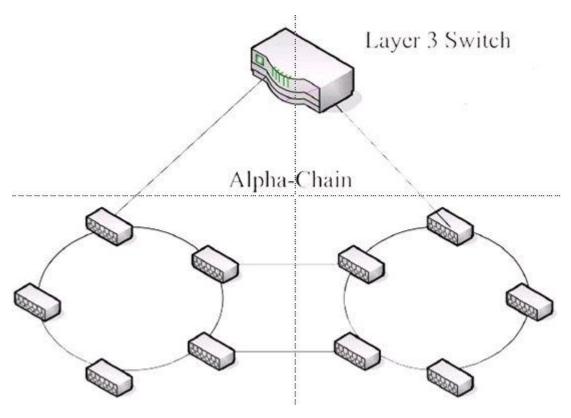


> Chain Setting


α -Chain は、下図のような従来のデイジーチェーン(PLC/スイッチングハブ等多段接続)構成時において、ボトルネックとなりうる、回線障害箇所(下例"Link down")配下のリンク冗長性(切替時間≦800ms)を図る独自機能です。

■ α-Ring構成例

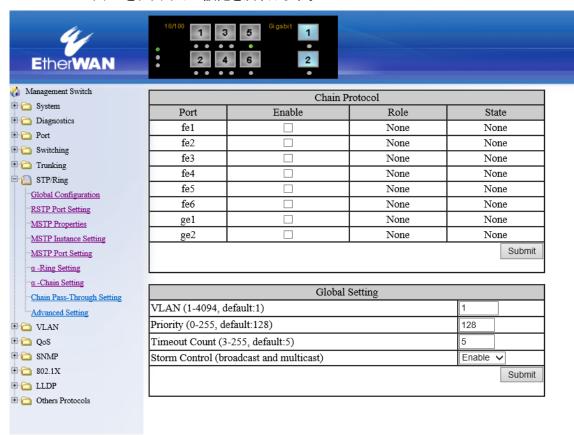
▶ 同一スイッチへ戻る構成



▶ 2 台スイッチを跨ぐ構成 ※リング間も可

▶ 上位 L3 スイッチへ接続する構成

※注:L3スイッチポート/ α -Chainポートの VLAN 設定は同一かつ、STP/RSTP/IGMP が無効化されている必要があります。

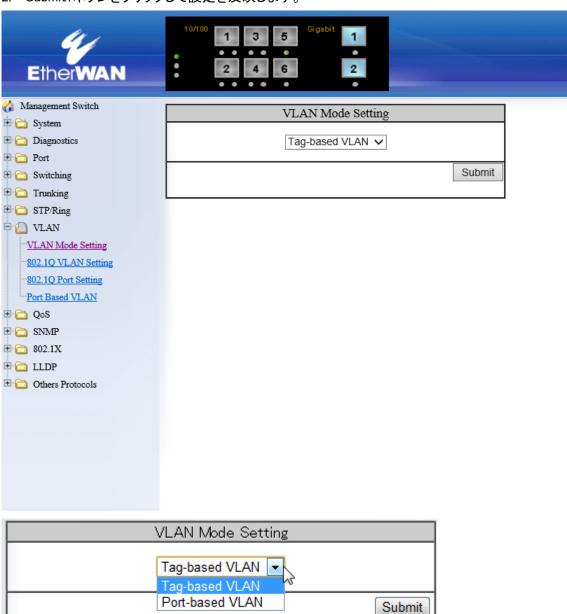


Chain Protocol:

- 1. α -Chain 機能を有効化するポートの"Enable" (有効化) ヘチェックを入れます。
- 2. "Submit"ボタンをクリックして設定を反映します。

Global Setting:

- 1. Priority: α Chain スイッチのプライオリティを設定します。※デフォルト=128 推奨
- 2. Timeout: 切替実行までのα -Chain 管理パケット連続欠落数 ※デフォルト=5 推奨
- 3. "Submit"ボタンをクリックして設定を反映します。

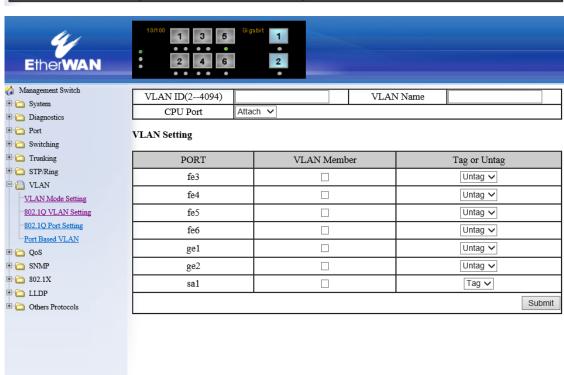


5.1.8. VLAN

VLAN Mode Setting

VLAN Mode Setting:

- 1. VLAN Setting:リストから VLAN モード "Tag-based VLAN"(タグ VLAN)、または"Port-Based VLAN"(ポートベース VLAN)を選択します。
- 2. Submit: ボタンをクリックして設定を反映します。



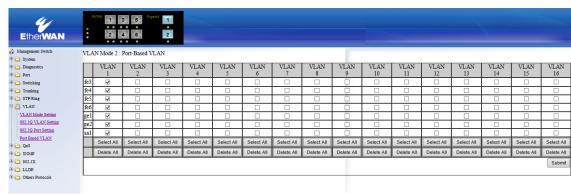
802.1Q VLAN Setting

- 1. 前述の"VLAN Mode Setting "にて"Tag-based VLAN"に設定します。
- 2. "Add VLAN"ボタンをクリックします。
- 3. VLAN ID(2-4094): 追加する VLAN ID を設定します。
- 4. VLAN Name: VLAN ID に対応する VLAN 名を付与します。
- 5. VLAN Member: VLAN に所属させるポートへチェックを入れます。
- 6. Tag or Untag: VLAN に所属するポートの属性を"Tag"、または"Untag"を選択します。
- 7. Submit:ボタンをクリックして設定を反映します。

VLAN Mode 1: Tag-Based VLAN

VLAN Setting		Add VLAN	Delete VLAN
VLAN ID	VLAN NAME		
<u>VLAN1</u>	Default		
VLAN100	Vlan100		

802.1Q Port Setting

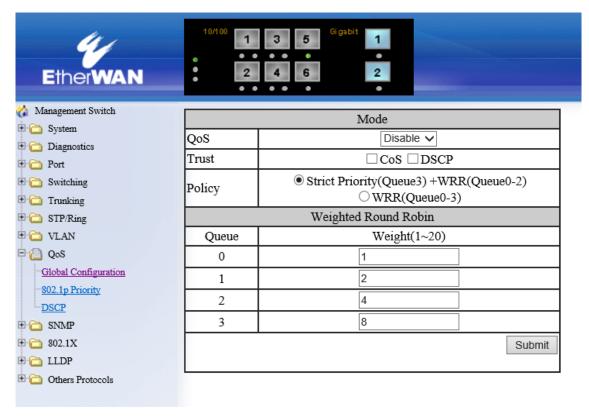

VLAN Port Setting:

- 1. Mode:ポートのモードを設定します。
 - Access:ポートをアクセスリンクとし、Untag フレームを送受信します。
 - ・ Trunk:ポートを2つのスイッチ間のトランクリンクとし、Tagフレームを送受信します。
 - Hybrid:ポートをハイブリッドリンクとし、Tag または Untag フレームを送受信します。
- 2. PVID:ポートの PVID (Untag フレームへ割り当てる VLAN ID)を設定します。
- 3. Update Setting:ボタンをクリックして設定を反映します。

Port Based VLAN

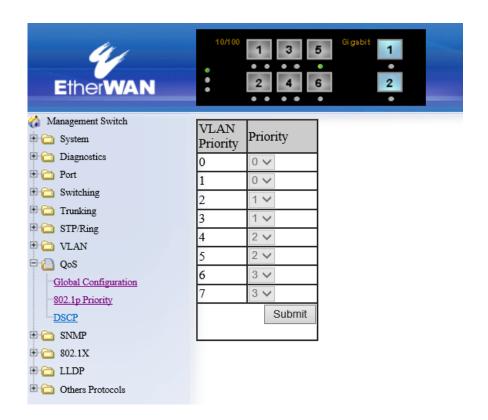
- 1. 前述の"VLAN Mode Setting "にて"Port-based VLAN"に設定します。
- 2. VLAN1-16:ポートへ割り当てる VLAN を選択します。
- 3. 該当 VLAN へ割り当てるポートをチェックします。
- 4. Select All:全てのポートを該当 VLAN へ割り当てます。
- 5. Delete All:全てのポートを該当 VLAN から削除します。
- 6. Submit:ボタンをクリックして設定を反映します。

5.1.9. QoS

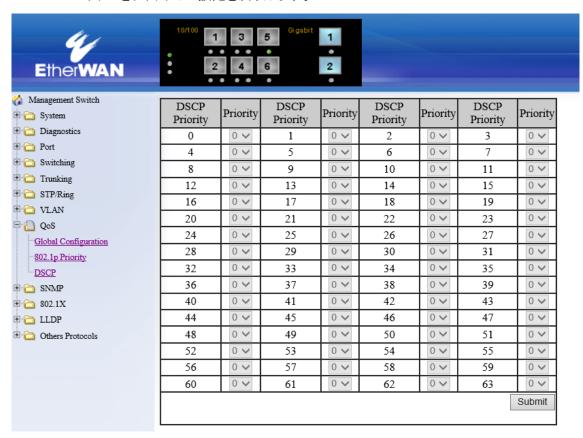

Global Configuration

Mode:

- 1. QoS: "Enable" (有効)、または"Disable" (無効)を選択します。
- 2. Trust:イーサネットヘッダの CoS フィールド、または IP ヘッダの DSCP(ToS)フィールドを元にフレームのクラス分けを行います。
- 3. Policy: 各キュー内のフレーム送信優先度と重み付けの設定をします。
 - Strict Priority(Queue3)+WRR(Queue0-2):最優先の Strict Priority キュー(Queue3)内のフレームから空となった後、各キュー(Queue0-2)内のフレームが重み付けされた比率で送信されます。
 - ・ WRR(Queue0-3): 各キューへ重み付けした比率でフレームを送信します。

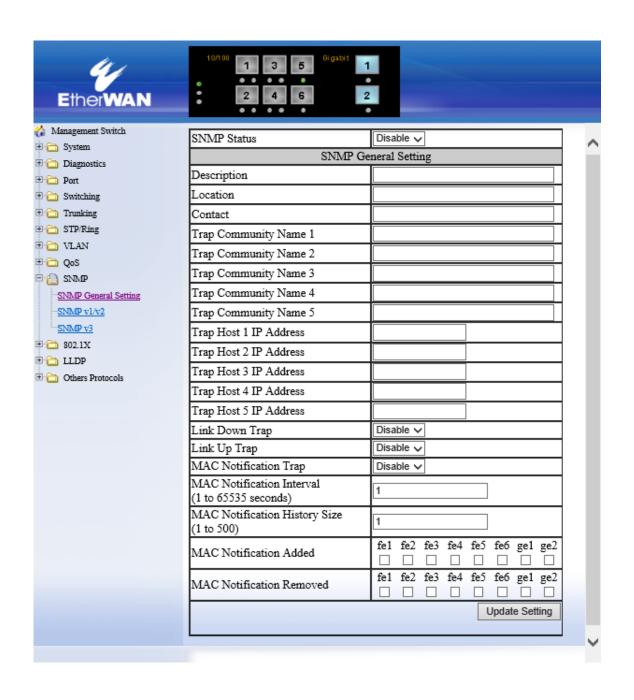

Weighted Round Robin:

- 4. Weight($1 \sim 20$): イーサネットヘッダの CoS フィールド、または IP ヘッダの DSCP(ToS)フィールドを元にフレームのクラス分けを行います。
- 3. Submit:ボタンをクリックして設定を反映します。

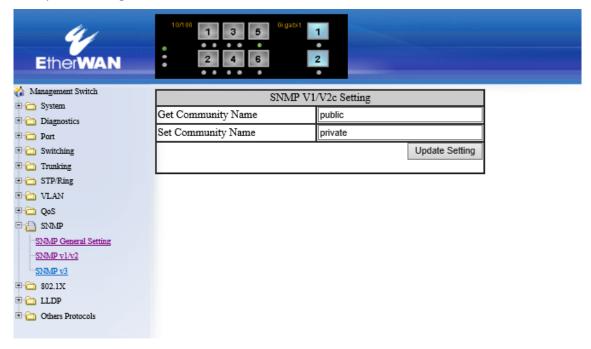

802.1p Priority

- 1. Priority: VLAN タグ内の CoS フィールド優先度(0:高、7:低)に基づくキュー(0:高、3:低)を選択します。
- 2. Submit:ボタンをクリックして設定を反映します。

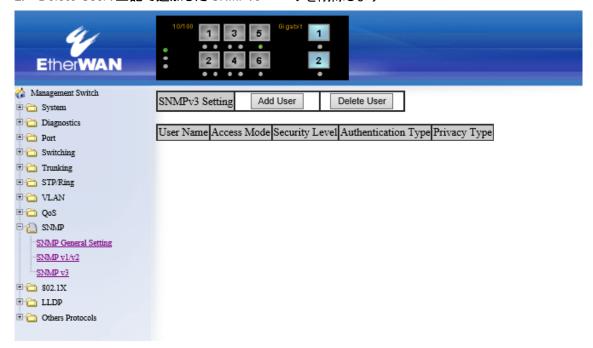
DSCP


- Priority: DSCP フィールドの優先度(参考推奨値: RFC4594)に基づくキュー(0:高、3:低)を割り当てます。
- 2. Submit:ボタンをクリックして設定を反映します。

5.1.10. SNMP


SNMP General Setting

- 1. SNMP Status: SNMP を"Enable"(有効化)、または"Disable"(無効化)します。
- 2. Description: SNMP 管理用の名称を付与します(任意)。
- 3. Location: 設置場所を入力します(任意)。
- 4. Contact: 連絡先を入力します(任意)。
- 5. Trap Community Name: Trap コミュニティ名を入力します。
- 6. Trap Host IP Address: Trap 送信先 SNMP マネージャの IP アドレスを入力します。
- 7. Cold Start Trap:電源投入時、ハードウェアリセット時の Trap 送信を"Enable"(有効化)、または"Disable"(無効化)します。
- 8. Warm Start Trap: SNMP エージェント起動時の Trap 送信を"Enable"(有効化)、または"Disable"(無効化)します。
- 9. Link Down Trap:ポートのリンクダウン時の Trap 送信を"Enable"(有効化)、または"Disable "(無効化)します。
- 10. Link Up Trap:ポートのリンクアップ時の Trap 送信を"Enable"(有効化)、または"Disable"(無効化)します。
- 11. Authentication Trap: SNMP マネージャから不正なコミュニティ名でアクセス時の Trap 送信を "Enable"(有効化)、または"Disable"(無効化)します。
- 12. Topology Change Trap: STP ポート状態遷移時の Trap 送信を"Enable"(有効化)、または"Disable"(無効化)します。
- 13. Update Setting:ボタンをクリックして設定を反映します。

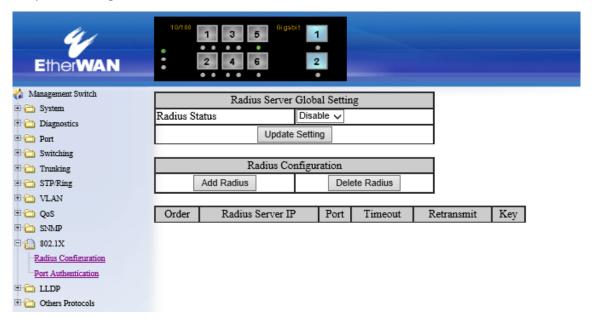

SNMP v1/v2c

- 1. Get Community Name: SNMP による読み取り用コミュニティ名を入力します。
- 2. Set Community Name: SNMP による書き込み用コミュニティ名を入力します。
- 3. Update Setting:ボタンをクリックして設定を反映します。

SNMP v3

- 1. Add User: SNMPv3 ユーザを追加します。
- 2. Delete User: 上記で追加した SNMPv3 ユーザを削除します

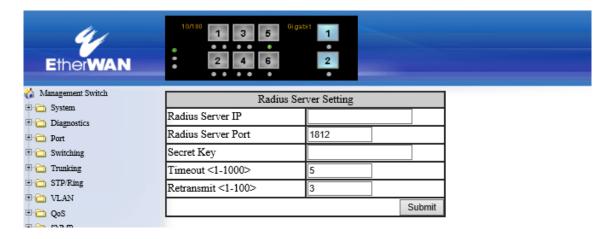
- 3. SNMP Version:リストから SNMP パケットのパスワード認証および暗号化有無を選択します。
 - SNMPv3 No-Auth:パスワード認証を行いません。
 - SNMPv3 Auth-MD5: MD5 認証方式によるパスワード認証を行います。
 - SNMPv3 Auth-SHA: SHA 認証方式によるパスワード認証を行います。
 - SNMPv3 Priv Auth-MD5: MD5 認証方式によるパスワード認証および DES 暗号化を行います。
 - SNMPv3 Priv Auth-SHA: SHA 認証方式によるパスワード認証および DES 暗号化を行います。
- 4. User Name: SNMP マネージャからアクセスするユーザ名を入力します。
- 5. Access Mode:上記ユーザに対して"Read-Only"(読み取り専用)、"Read-Write"(読み書き) いずれかのアクセス権を付与します。
- 6. Auth Password: 認証パスワードを入力します。
- 7. Privacy PassPhrase:暗号化パスワードを入力します。
- 8. Submit: ボタンをクリックして設定を反映します。


5.1.11. 802.1x

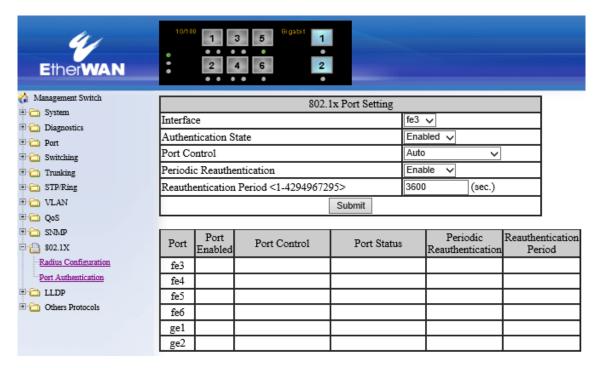
Radius Configuration

Radius Server Global Setting:

Radius Status: Radius サーバによるユーザ認証を"Enable"(有効化)、または"Disable"(無効化)します。


Update Setting:ボタンをクリックして設定を反映します。

Radius Configuration:

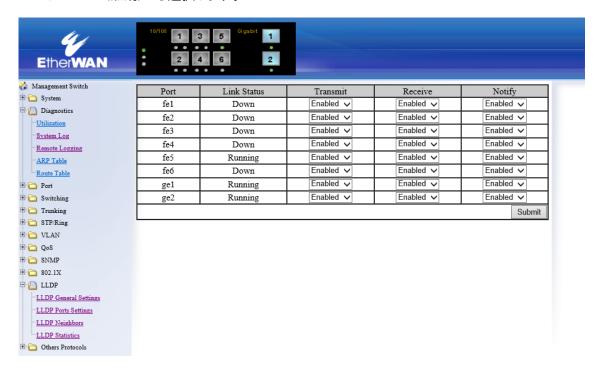

Add Radius: Radius サーバを追加します。

Delete Radius: 追加した Radius サーバを削除します。

Port Authentication

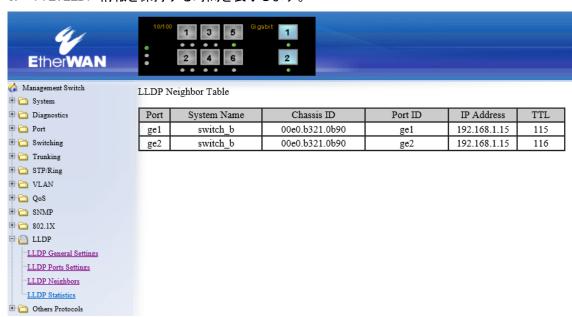
- 1. Interface:設定を変更するインタフェースを選択します。
- 2. Authentication State:認証機能の"Enable(有効)"または"Disable(無効)"を選択します。Port Control: "Auto"の場合は、Radius サーバとの認証を行います。"Force Authentication"を選択した場合は、常に認証が成功した状態になり、"Force Unauthentication"を選択した場合は、常に認証失敗の状態となります。
- 3. Periodic Reauthentication: 定期的に再認証を行かどうか、"Enable(有効)または"Disable(無効)から選択します。
- 4. Reauthentication Period: "Periodic Reauthentication"を有効にした場合、何秒間隔で再認証を行うかどうかを設定します。
- 5. Submit: "Submit"ボタンをクリックして設定を反映します。

5.1.12. LLDP

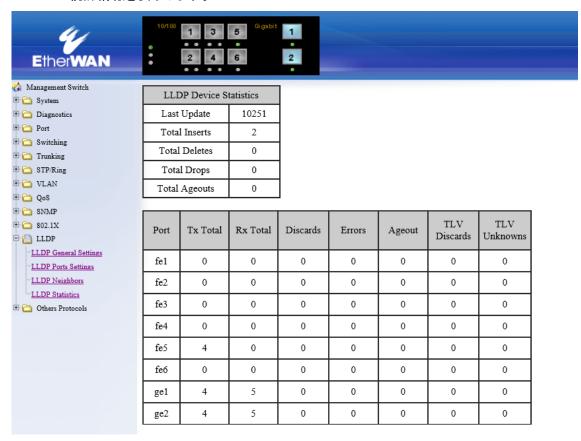

LLDP General Settings

- 1. LLDP: LLDP 機能の"Enable(有効)"または"Disable(無効)"を選択します。
- 2. Holdtime multiplier: 受信装置が情報を保持する時間(TTL)を設定します。ここに入力した値 *Tx Interval の値=TTL で計算されます。
 - 例えば、Holdtime multiplier=4、Tx Interval=30 の場合、TTL は 120 になります。
- 3. Tx Interval: LLDP フレームを送信する間隔(秒)を設定します。
- 4. Global TLV setting: LLDP にて送信する情報を選択します。
- 5. Update Setting: "Update Setting"をクリックして設定を反映します。

EtherWAN Management Switch	2 4 6	2				
System	LLDP Global Setting					
🗈 🧀 Diagnostics	LLDP Transmit Setting					
🗈 🧀 Port	LLDP	Disable V				
Switching	Holdtime multiplier(2-10)	4				
Trunking	Tx Interval (532768 sec)	30				
STP/Ring VLAN QoS SNMP S02.1X LLDP General Settings LLDP Ports Settings LLDP Neighbors LLDP Statistics Others Protocols	Global TLV setting	□ All □ Port Description □ System Name □ System Description □ System Capabilities □ Management Address □ Port VLAN ID □ MAC/PHY Configuration/Status □ Port And Protocol VLAN ID □ VLAN Name □ Protocol Identity □ Link Aggregation □ Maximum Frame Size				
		Update Setting				


LLDP Port Settings

- 1. Transmit: LLDP フレーム送信の"Enable(有効)"または"Disable(無効)"を選択します。
- 2. Receive: LLDP フレーム受信の"Enable(有効)"または"Disable(無効)"を選択します。
- 3. Notify:LLDP 情報に変化があった際に、SNMP Trap で通知するかどうかを"Enable(有効)または"Disable(無効)から選択します。


LLDP Neighbor

- 1. Port: 自身のポート番号を表示します。・
- 2. System Name: LLDP 送信元のシステム名を表示します。
- 3. Chassis ID: LLDP 送信元の MAC アドレスを表示します。
- 4. Port ID: LLDP 送信元のポート番号を表示します。
- 5. IP Address: LLDP 送信元の IP アドレスを表示します。
- 6. TTL:LLDP 情報を保持する時間を表示します。

LLDP Statistics

LLDP の統計情報を表示します。

5.1.13. Other Protocols

GVRP

GVRP Global Setting:

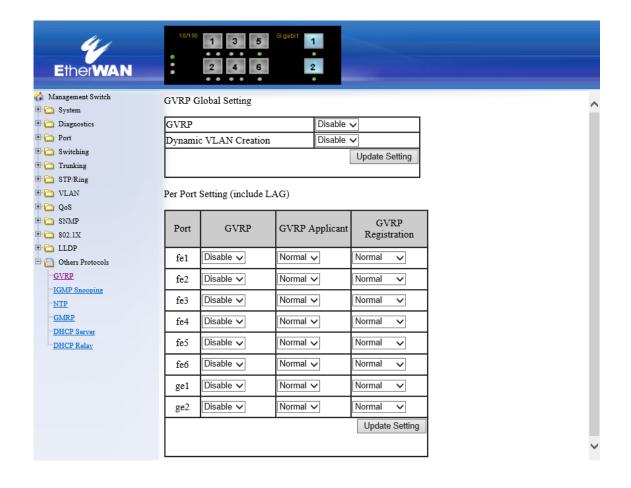
- 1. GVRP: GVRP (Generic VLAN Registration Protocol)を"Enable"(有効化)、または"Disable" (無効化)します。
- 2. Dynamic VLAN creation:動的な VLAN の追加を"Enable"(有効化)、または"Disable"(無効化) します。
- 3. Update Setting:ボタンをクリックして設定を反映します。

Per Port Setting(include LAG):

- 4. GVRP: GVRP (Generic VLAN Registration Protocol)を"Enable"(有効化)、または"Disable" (無効化)します。
- 5. GVRP applicant: VLAN の追加を"Enable"(有効化)、または"Disable"(無効化)します。

Normal: STP Blocking ポートで設定します。

GVRP VLAN Declaration メッセージを送信しません。


Active: STP Blocking ポートで設定します。GVRP VLAN Declaration メッセージを送信することで、不要な STP トポロジ変化を避けるとともに、VLAN がプルーニングされることを防ぎます。

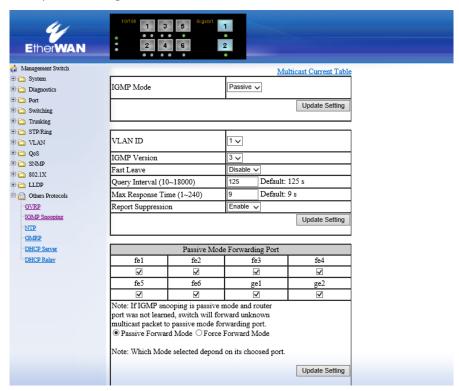
6. GVRP registration: VLAN の追加を"Enable"(有効化)、または"Disable"(無効化)します。

Enable: 該当ポートで動的な VLAN 登録・削除を行います。

Disable: 該当ポートで動的な VLAN 登録・削除(VLAN1 を除く)を行いません。

7. Update Setting:ボタンをクリックして設定を反映します。

IGMP Snooping


1. IGMP mode: IGMP モードを選択します。

Passive: 該当 VLAN の IGMP Snooping を有効化します。

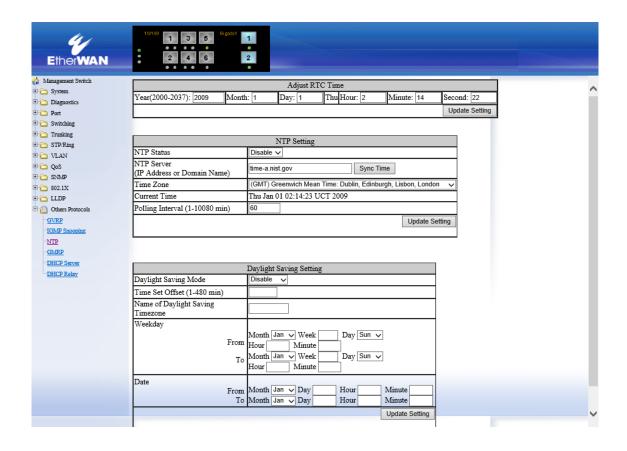
• Disable: IGMP Snooping を無効化します。

 Querier: 該当 VLAN の IGMP クエリアとなり、該当 VLAN が設定されたポートから IGMP クエリを送信します。

- 2. Update Setting:ボタンをクリックして設定を反映します。
- 3. VLAN ID: IGMP Snooping、またはクエリアを有効化する VLAN を選択します。
- 4. IGMP version: IGMP バージョン (1~3)を選択します。
- 5. fast-leave:IGMP Fast-Leave 機能を"Enable"(有効化)、または"Disable"(無効化)します。
- 6. query-interval(1~18000):IGMP クエリ送信間隔を"1~18000 秒"の範囲で設定します。
- 7. max-response-time(1-240): IGMPv2 を使用している場合、IGMP クエリでアドバタイズされる 最大クエリ応答時間を"1~240 秒"の範囲で設定します。これにより、IGMP グループメンバが 存在しないことを短時間で検出することが可能です。
- 8. report suppression: IGMPv1/v2のリポート抑制機能(IGMPグループ内の1メンバからのIGMPリポートのみ送信)を"Enable"(有効化)、または"Disable"(無効化)します。
- 9. Update Setting:ボタンをクリックして設定を反映します。

NTP

Adjust RTC Time:

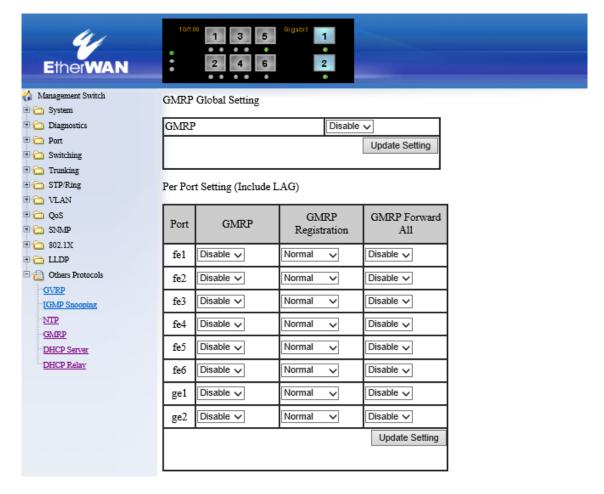

- 1. Year(2000-2037): |Month: |Day: |Hour: |Minute: |Second: スイッチ内部で保持している時間を 設定します。
- 2. Update Setting: ボタンをクリックして設定を反映します。

NTP Setting:

- 3. NTP Status: NTP を"Enable"(有効化)、または"Disable"(無効化)します。
- 4. NTP Server: NTP を有効化した場合、NTP サーバの IP アドレスを入力します。
- 5. Time zone:リストから適用するタイムゾーンを選択します。
- 6. Current time: IGMP Fast-Leave 機能を"Enable"(有効化)、または"Disable"(無効化)します。
- 7. Poling Interval(1-10080 min): NTP サーバへのポーリング(時刻同期問い合わせ)間隔を"1~10080 分"範囲で設定します。
- 8. Update Setting:ボタンをクリックして設定を反映します。

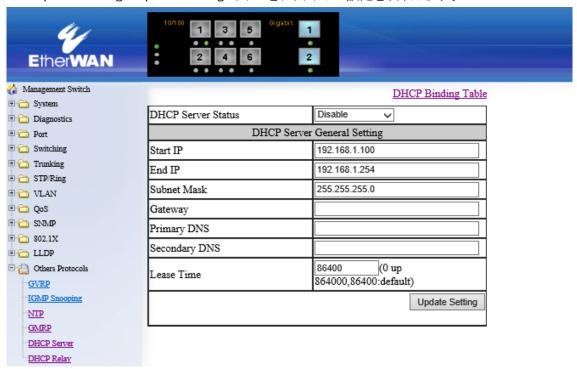
Daylight Saving Setting:

- 9. Daylight Saving Mode: 夏時間を"Enable"(有効化)、または"Disable"(無効化)します。
- 10. Time Set Offset(1-1440 min):UTC からのオフセット時間を"1~1440 分"の範囲で設定します。
- 11. Name of Daylight Saving Time zone:任意の名称を入力します。
- 12. Weekday: 夏時間を有効とする期間を設定します。
 - From Month Week Day Hour Munite: 夏時間を開始する月週 曜日 時 分を入力します。
 - ・ To Month|Week|Day|Hour|Munite:夏時間を停止する月|週|曜日|時|分を入力します。
- 13. Date: 夏時間を有効とする期間を設定します。
 - From Month Day Hour Munite: 夏時間を開始する月日 時 分を入力します。
 - ・ To Month Day Hour Munite: 夏時間を停止する月日 時 分を入力します。
- 14. Update Setting:ボタンをクリックして設定を反映します。


GMRP

GMRP Global Setting

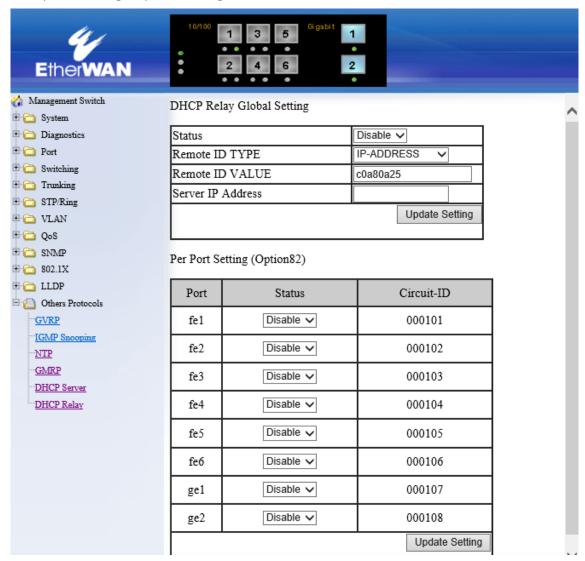
1. GMRP: GMRP の"Enable(有効)"または"Disable(無効)"を選択します。


Per Port Setting (Include LAG)

- 2. GMRP: ポート毎に GMRP の"Enable(有効)"または"Disable(無効)"を選択します。
- 3. GMRP Registration: GMRP によるマルチキャストグループ登録方法をポート単位に設定します。
 - •Normal:GMRPによる動的なマルチキャストグループ登録、削除を行います。
 - •Fixed:その時点で既に登録済みのマルチキャストグループのみ固定登録します。
 - ・Forbidden:その時点で既に登録済みのマルチキャストグループを削除し、GMRP による新たなマルチキャスグループ登録は行いません。
- 4. GMRP Forward All: GMRP パケット透過の"Enable(有効)または"Disable(無効)"を設定します。
- 5. Update Setting: "Update Setting"ボタンをクリックして設定を反映します。

DHCP Server

- 1. DHCP Server Status: DHCP サーバの"Enable(有効)"または"Disable(無効)"を選択します。
- 2. Start IP: 割り当てる IP アドレス範囲の先頭アドレスを指定します。
- 3. End IP:割り当てる IP アドレス範囲の最終アドレスを指定します。
- 4. Subnet Mask: サブネットマスクを指定します。
- 5. Gateway: デフォルトゲートウェイを指定します。
- 6. Primary DNS:プライマリ DNS サーバを指定します。
- 7. Secondary DNS: セカンダリ DNS サーバを指定します。
- 8. Lease Time:リース期限をしていします。
- 9. Update Setting: "Update Setting"ボタンをクリックして設定を反映します。


DHCP Relay

DHCP Relay Global Setting

- 1. Status: DHCP リレーの"Enable(有効)"または"Disable(無効)"を設定します。
- 2. Remote ID TYPE:リモート ID のタイプを選択します。
- 3. Remote ID VALUE: リモート ID を入力します。
- 4. Server IP Address: DHCP サーバの IP アドレスを入力します。
- 5. Update Setting: "Update Setting"ボタンをクリックして設定を反映します。

Per Port Setting (Option82)

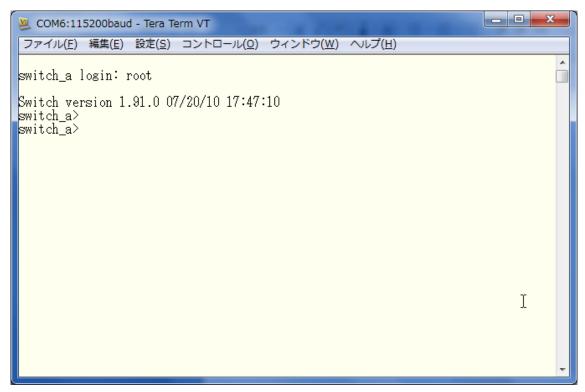
- 1. Status: "Enable(有効)"または"Disable(無効)"を選択します。
- 2. Update Setting: "Update Setting"ボタンをクリックして設定を反映します。

5.2 CLI による設定

CLI(コマンドラインインタフェース)による設定はシリアルケーブル接続、モデム経由、または Telnet いずれかにより行います。

5.2.1 CLI による設定方法

■コンソール接続


コンソールポートへ付属のシリアルケーブルを接続し、ハイパーターミナル等の端末エミュレーションプログラムを搭載した PC で下記パラメータを設定し、接続します。

▶ シリアルポートパラメータ:

- ♦ 115,200bps
- ◆ 8 data bits (8 データビット)
- ◆ No parity(パリティなし)
- **♦** 1 stop bit(1 ストップビット)

▶ ログインパラメータ:

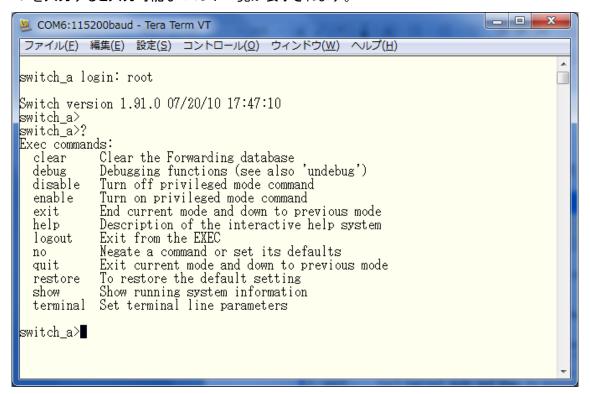
- ◆ ログインユーザー名:root
- ♦ パスワード:なし

■Telnet による接続

Windows PC にてコマンドプロンプトを開き下記を入力することでアクセス可能です。

>C:\telnet 192.168.1.10

※ IP アドレスは初期設定値です。

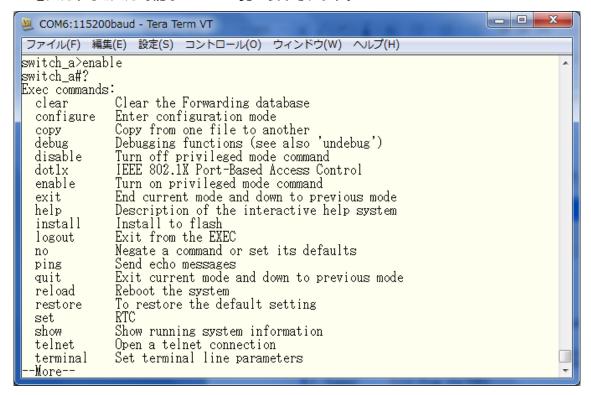

5.2.2 ログインモード

■View モード

ログイン後、スイッチの各設定情報、状態確認が行えるモードです。

〈例〉

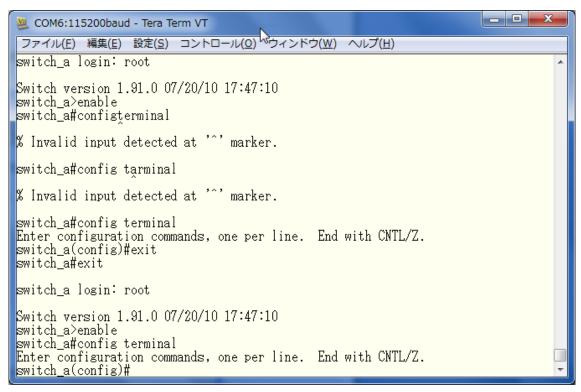
"?"を入力すると入力可能なコマンド一覧が表示されます。


■ enable モード

"enable"と入力して Enable モードへ移行します。

View モードで表示可能な情報に加え、コンフィグ (Running-Config/Startup-Config)の表示や、Debug コマンドによるデバッグ情報の表示等を行うモードです。

<例>


"?"を入力すると入力可能なコマンド一覧が表示されます。

■ Config モード

"config terminal"と入力して Config モードへ移行します。

スイッチの各種設定を行うモードです。

"?"を入力すると入力可能なコマンド一覧が表示されます。

```
_ D X
COM6:115200baud - Tera Term VT
ファイル(F) 編集(E) 設定(S) コントロール(O) ウィンドウ(W) ヘルプ(H)
Enter configuration commands, one per line. End with CNTL/Z.
switch_a(config)#?
Configure commands:
  alarm-trigger
                         Alarm trigger
                         Define a login banner
  banner
                         Bridge group commands
  bridge
                         System Daylight Saving
   clock
                        Debugging functions (see also 'undebug')
To run exec commands in config mode
IEEE 802.1% Port-Based Access Control
   debug
  do
   dot1x
                         Modify enable password parameters
   enable
                        End current mode and down to previous mode
Description of the interactive help system
Set system's network name
   exit
   help
   hostname
                        Select an interface to configure
Internet Protocol (IP)
LACP commands
Configure a terminal line
   interface
   ip
   lacp
   line
   log
                         Logging control
   mls
                         Switch(L2).
                         Negate a command or set its defaults
NTP
  no
  ntp
                         РοЕ
   poe
  -More-- 🛮
```

5.2.3 System コマンド

♦ hostname <HOSTNAME>

スイッチ名称を設定します。〈HOSTNAME〉へ任意の半角英数記号(アルファベットで始まる 63 文字まで)を入力します。

〈デフォルト設定〉

Switch a

〈例〉

下例では"switch"という名称を設定しています。

Switch_a(config)#hostname switch

Switch(config)#

<削除例>

設定を削除する場合、コマンドの前に"no"を入力します。

Switch_a(config)#no hostname

Switch_a(config)#

※注:設定削除の方法は以下全て同様です。

enable password <PASSWORD>

Enable モードパスワードを設定します。

〈デフォルト設定〉

なし

〈設定例〉

下例では"mypassword"というパスワードを設定しています。

Switch_a(config)#enable password mypassword

♦ ip address <IP ADDRESS>/<SUBNET MASK>

VLAN インタフェースへ IP アドレスを設定します。

〈デフォルト設定〉

192.168.1.10/24

〈例〉

下例では"192.168.1.1/255.255.255.0"の IP アドレスを VLAN1(=VLAN1.1※VLAN2 の場合 vlan1.2となります)へ設定しています。

Switch_a(config)#interface vlan1.1

Switch_a(config-if)#ip address 192.168.1.1/24

Switch_a(config-if)#

VLAN インタフェースヘデフォルトゲートウェイを設定します。

〈デフォルト設定〉

なし

<例>>

下例では"192.168.1.254"のデフォルトゲートウェイを設定しています。

Switch_a(config)#ip address 192.168.1.254/24

Switch_a(config)#

参照する DNS サーバアドレスを設定します。

〈デフォルト設定〉

なし

〈例〉

下例では"192.168.1.2"の DNS サーバを設定しています。

Switch_a(config)#ip dns 192.168.1.2

• get ip dhcp enable

DHCP クライアントを有効にします。

〈デフォルト設定〉

無効

〈例〉

下例では DHCP クライアント機能を有効にしています。

Switch_a(config)#interface vlan1.1

Switch_a(config-if)#get ip dhcp enable

Switch_a(config-if)#

• ip telnet

Telnet アクセスを有効にします。

〈デフォルト設定〉

有効

<例>

下例では Telnet アクセスを有効にしています。

Switch_a(config)#ip telnet

Switch_a(config)#

♦ ip ssh

SSH アクセスを有効にします。

〈デフォルト設定〉

無効

<例>

下例では SSH アクセスを有効にしています。

Switch_a(config)#ip ssh

♦ ip http server

HTTP アクセスを有効にします。

〈デフォルト設定〉

有効

〈例〉

下例では HTTP アクセスを有効にしています。

Switch_a(config)#ip http server

Switch_a(config)#

♦ ip http secure-server

HTTPS アクセスを有効にします。

〈デフォルト設定〉

無効

<例>

下例では HTTPS アクセスを有効にしています。

Switch_a(config)#ip http secure-server

♦ install image <IP ADDRESS> <FIRMWARE FILE NAME>

TFTP サーバからファームウェアをダウンロードし、ファイルの展開を行います。

※ ダウンロード・展開完了後、"reload"コマンドにて再起動が必要です。

〈デフォルト設定〉

なし

〈例〉

下例では"192.168.1.100"の TFTP サーバからファームウェアをダウンロード・展開後、再起動しています。

Switch_a#install image 192.168.1.100 flash.tgz

Download now, please wait...

tftp flash.tgz from ip 192.168.1.100 success!!

Install now. This may take several minutes, please wait...

Install success!

Switch_a#reload

Reboot now, please wait....

The system is going down NOW!!

Sending SIGTERM to all processes.

% Connection is closed by administrator!

Sending SIGKILL to all processes.

Requesting system reboot.

.Start bootloader ...

Uncompressing image ...

Starting image ...

.....

◆ install config—file <IP ADDRESS> <CONFIG FILE NAME>

TFTP サーバからコンフィグファイルをダウンロードし、ファイルの展開を行います。

〈デフォルト設定〉

なし

<例>

下例では"192.168.1.100"の TFTP サーバからバックアップしたコンフィグファイルをダウンロード、 展開しています。

Switch_a#install config-file config-backup.cfg 192.168.1.100

Switch a#

◆ write config-file <IP ADDRESS> <CONFIG FILE NAME>

TFTP サーバへコンフィグファイルのアップロード(バックアップ)を行います。

〈デフォルト設定〉

なし

〈例〉

下例では TFTP サーバ"192.168.1.100"へコンフィグファイル" config-backup.cfg"のバックアップを行っています。

Switch_a#write config-file 192.168.1.100 config-backup.cfg

Switch_a#

◆ copy running-config startup-config

現在のコンフィグファイル (running-config) を起動時のコンフィグファイル (startup-config) へ書き込みます。

※ write memory コマンドと同じです。

〈デフォルト設定〉

なし

<例>

Switch_a#copy running-config startup-config

Switch_a#

◆ service auto-config enable

設定の自動保存機能を有効にします。

〈デフォルト設定〉

無効

〈例〉

下例では、設定の自動保存機能を有効にしています。

Switch_a(config)#service auto-config enable

Switch_a(config)#

◆ service auto-config interval <interval(sec)>

設定を自動保存する間隔を設定します。

〈デフォルト設定〉

30

<例>

下例では、設定の自動保存機能を有効にした後、自動保存の間隔を10秒に設定しています。

Switch_a(config)#service auto-config enable

Switch_a(config)#service auto-config interval 10

♦ restore default

コンフィグファイルをデフォルト状態(工場出荷時)へ戻します。

※コマンド実行後、自動的に再起動します。

〈デフォルト設定〉

なし

<例>

Switch_a#restore default

Switch_a#

reload

スイッチの再起動を行います。

〈デフォルト設定〉

なし

<例>

下例では、スイッチの再起動を行っています。

Switch_a#reload

Reboot now, please wait...

The system is going down NOW!!

Sending SIGTERM to all processes.

% Connection is closed by administrator!

Sending SIGKILL to all processes.

Requesting system reboot.

.Start bootloader ...

Uncompressing image ...

Starting image ...

.....

switch_a login:

♦ logout

スイッチからログアウトします。

〈デフォルト設定〉

なし

<例>

switch_a#logout switch_a login:

♦ login local

Multi-User モードを有効にします。

〈デフォルト設定〉

なし

<例>

switch_a(config)#line console 0 switch_a(config-line)#login local

% Switching Single/Multi/Radius-User mode need to reboot the switch to take effect! switch_a(config-line)#

◆ login

Single モードを有効にします。

〈デフォルト設定〉

なし

<例>

switch_a(config)#line console 0 switch_a(config-line)#login

% Switching Single/Multi/Radius-User mode need to reboot the switch to take effect! switch_a(config-line)#

♦ login radius

Radius-User モードを有効にします。

〈デフォルト設定〉

なし

<例>

switch_a(config)#line console 0 switch_a(config-line)#login radius

% Switching Single/Multi/Radius-User mode need to reboot the switch to take effect! switch_a(config-line)#

◆ username <username> privilege <admin|operation|technician> password <password> ユーザを新規作成します。

〈デフォルト設定〉

なし

<例>

switch_a(config)#username user1 privilege operator password 1234 switch_a(config)#

5.2.4 Diagnostics コマンド

◆ remote-log enable

リモートログを有効にします。

〈デフォルト設定〉

無効

〈例〉

下例ではリモートログ機能を有効にしています。

switch_a(config)#remote-log enable
switch_a(config)#

remote-log add/del <ip_address>

ログを送信する Syslog サーバの追加/削除を行います。

〈デフォルト設定〉

なし

<例>

下例では"192.168.1.20"の Syslog サーバを追加した後、削除しています。

switch_a(config)#remote-log add 192.168.1.20 switch_a(config)#remote-log del 192.168.1.20 switch_a(config)#

♦ show arp-table

ARP テーブルの確認を行います。

〈デフォルト設定〉

なし

〈例〉

switch_a#show arp-table

IP address HW type Flags HW address Mask VLAN 192.168.10.20 1 2 xxxx.ffff.yyyy * 1 switch_a#

♦ show route-table

Route テーブルの確認を行います。

〈デフォルト設定〉

なし

<例>

switch_a#show route-table

Destination	Gateway	Genmask		Flags N	letric F	Ref	Use	VLAN
192.168.10.0	0.0.0.0	255.255.255.0	U	0	0	0		1

5.2.5 Port コマンド

◆ shutdown

ポートステータスの Down(shutdown)/Up(no shutdown)を設定します。

〈デフォルト設定〉

no shutdown

<例>

下例では Fast Ethernet ポート 1 を Down 設定しています。

```
switch_a(config)#interface fe1
switch_a(config-if)#shutdown
switch_a(config-if)#
```

◆ duplex

ポートのオートネゴシエーション(auto)、全二重(full)/半二重(half)を設定します。

〈デフォルト設定〉

auto

<例>

下例では Fast Ethernet ポート 1 を全二重設定しています。

```
switch_a(config)#interface fe1
switch_a(config-if)#duplex full
switch_a(config-if)#
```

♦ bandwidth <10/100Mbps>

ポート速度を 10Mbps もしくは 100Mbps で設定します。

※ PortG1、PortG2 については 1000Mbps のみの設定となります。

〈デフォルト設定〉

なし

<例>

下例では Fast Ethernet ポート 1 を 10Mbps 固定へ設定しています。

switch_a(config)#interface fe1
switch_a(config-if)#bandwidth 10m
switch_a(config-if)#

※ ポート速度を Auto に戻す場合は、下記のコマンドを入力します。

switch_a(config)#interface fe1 switch_a(config-if)#no bandwidth switch_a(config-if)#

♦ flowcontrol on

ポートのフロー制御を設定します。

〈デフォルト設定〉

on

<例>

下例では Fast Ethernet ポート 1 のフロー制御を無効へ設定しています。

switch_a(config)#interface fe1 switch_a(config-if)#no flowcontrol switch_a(config-if)#

◆ show interface <IF NAME>

インタフェースの状態を表示します。

<例>

下例では Fast Ethernet ポート 1 の設定、稼動状態を表示しています。

switch_a#sh interface fe1

Interface fe1

Hardware is Ethernet, medium is copper, address is 00e0.b320.1188 index 1 metric 1 mtu 1518 duplex half arp ageing timeout 0 <BROADCAST,MULTICAST>

VRF Binding: Not bound

Bandwidth 1G

input packets 00, bytes 00, dropped 00, multicast packets 00 output packets 00, bytes 00, multicast packets 00 broadcast packets 00 switch_a#

◆ rate-control ingress/egress <64-1000000 kbps>

ポートの帯域制御を設定します。

※ 1792k 以下の場合、64k 単位の倍数で設定します。 また、2048 以上の場合、1024k 単位の倍数で設定してください。

〈デフォルト設定〉

なし

<例>

下例では Fast Ethernet ポート 1 の受信側の最大帯域幅を 64kbps へ制限しています。

switch_a(config)#interface fe1 switch_a(config-if)#rate-control ingress value 64 switch_a(config-if)#

♦ show interface statistics <IF NAME>

ポートの RMON 統計情報を表示します。

<例>

下例では Fast Ethernet ポート 1 の統計を表示しています。

switch_a#show interface statistics fe1

Interface fe2

Drop Events 0

Broadcast Packets Received 184

Multicast Packets Received 18

Undersize Packets Received 0

Oversize Packets Received 0

fragments_pkts 15

64-byte Packets Received 3967

65 to 127-byte Packets Received 2790

128 to 255-byte Packets Received 23

256 to 511-byte Packets Received 210

512 to 1023-byte Packets Received 1040

1.0 to 1.5-kbytePackets Received 0

Jabber Packets 0

Bytes Received 1140705

Packets Received 8045

Collisions 512

CRC/Alignment Errors Received 0

TX No Errors 10306

RX No Errors 8030

switch_a#

◆ show vlan ⟨VLAN ID: 1 - 4094⟩ VLAN 設定情報を表示します。

〈例〉

下例では VLAN1 の設定情報を表示しています。

switch_a#show vlan 1

Bridge Group: 1

Bridge Type VLAN ID Name State Member ports

(u)-Untagged, (t)-Tagged

1 Tagged 1 default ACTIVE fe1(u) fe2(u) fe3(u) fe4(u)

ge1(u) ge2(u)

switch_a#

5.2.6 Switching コマンド

Bridging, Static MAC Entry, Port Mirroring, PoE, PoE Scheduling の各設定を行います。

◆ bridge 1 ageing~time 〈AGE TIME: 10~ 1000000 sec〉 学習した MAC アドレスのエージング (内部保持) 時間(秒)を設定します。

〈デフォルト設定〉

300

<例>

下例ではエージング時間を1000秒へ設定しています。

switch_a(config)#bridge 1 ageing-time 1000
switch_a(config)#

◆ port-isolation enable

Port isolation 機能を有効にします。有効にしたポート同士の通信を遮断します。

〈デフォルト設定〉

無効

<例>

下例では Fe1 ポートで Port isolation 機能を有効にしています。

switch_a(config)#interface fe1
switch_a(config-if)#port-isolation enable
switch_a(config-if)#

◆ storm-control level <0.1-100>

ブロードキャスト、または宛先不明マルチキャスト(DLF-Multicast)トラフィックを許容する上限閾値を%単位で設定します。該当ポートと通過する閾値を超えたトラフィックは廃棄されます。

〈デフォルト設定〉

なし

〈例〉

下例ではポート 1(fe1)へ流入するブロードキャスト、または宛先不明マルチキャスト (DLF-Multicast)トラフィックを 10%未満(10Mbps 未満)へ制限しています。

switch_a(config)#interface fe1 switch_a(config-if)#storm-control level 10

◆ storm-control broadcast <enable>

上記 Level で設定した閾値をブロードキャストトラフィックに対して適用します。

〈デフォルト設定〉

なし

<例>

下例ではポート 1(fe1)へ適用しています。

switch_a(config)#interface fe1
switch_a(config-if)#storm-control broadcast enable
switch_a(config-if)#

◆ storm-control dlf multicast <enable>

上記 Level で設定した閾値を宛先不明マルチキャスト(DLF-Multicast)トラフィックに対して適用します。

〈デフォルト設定〉

なし

<例>

下例ではポート1(fe1)へ適用しています。

switch_a(config)#interface fe1
switch_a(config-if)#storm-control dlf-multicast enable
switch_a(config-if)#

◆ bridge-group 1 address <MAC ADDRESS> forward <IF NAME> vlan <VLAN ID> 指定した MAC アドレス宛のトラフィックを指定したポート、VLAN へ送信します。
※ "vlan <VLAN ID>"は省略可能です。

〈デフォルト設定〉

なし

<例>

下例では宛先 MAC アドレス"1111.2222.3333"を持つトラフィックをポート 2(fe2)、VLAN2 へ送信します。

switch_a(config)#bridge 1 address 1111.2222.3333 forward fe2 vlan 2
switch_a(config-if)#
switch_a(config-if)#

◆ bridge 1 loopback-detect <enable | disable>
Loop back 検出機能の有効/無効を設定します。

〈デフォルト設定〉

無効

〈例〉

下例では Loop back 検出機能を有効にしています。

switch_a(config)#bridge 1 loopback-detect enable
switch_a(config)#

◆ bridge 1 loopback-detect action <errdisable | none>
Loopback 検出機能により、Loopback を検出した際の動作を設定します。

〈デフォルト設定〉

None

<例>

下例では Loop back 検出した際に強制的にポートをシャットダウンするように設定しています。

switch_a(config)#bridge 1 loopback-detect action errdisable switch_a(config)#

◆ bridge 1 loopback-detect errdisable-recovery <0-65535>

Loopbackを検出してポートをシャットダウンした後、何秒後に復帰させるかを設定します。

〈デフォルト設定〉

0(自動復帰無し)

〈例〉

下例では Loop back を検出してポートをシャットダウンした後、30 秒後にポートを復帰させるように設定しています。

switch_a(config)#bridge 1 loopback-detect errdisable-recovery 30 switch_a(config)#

◆ bridge 1 loopback-detect interval <1-65535>

Loopback 検出を行う間隔を設定します。

〈デフォルト設定〉

1

〈例〉

下例では Loop back 検出を行う間隔を 10 秒に設定しています。

switch_a(config)#bridge 1 loopback-detect interval 10

loopback-detect port enable

ポート毎に Loopback 検出の有効/無効を設定します。

〈デフォルト設定〉

無効

<例>

下例では Fe1 で Loopback 検出を有効にしています。

switch_a(config)#interface fe1 switch_a(config-if)#loopback-detect port enable

◆ bridge 1 storm-detect errdisable ストーム検出機能を有効にします。

〈デフォルト設定〉

無効

〈例〉

下例ではストーム検出機能を有効にしています。 switch_a(config)#bridge 1 storm-detect errdisable switch_a(config)#

◆ bridge 1 storm-detect interval <2-6535> ストーム検出を行う間隔を設定します。

〈デフォルト設定〉

10

<例>

下例ではストーム検出を行う間隔を 30 秒に設定しています。 switch_a(config)#bridge 1 storm-detect interval 30 switch_a(config)#

◆ bridge 1 storm-detect errdisable-recovery <0-65535> ストームを検出してポートをシャットダウンした後、何秒後に復帰させるかを設定します。

〈デフォルト設定〉

0(自動復帰無し)

<例>

下例ではストームを検出してポートをシャットダウンした後、30 秒後にポートを復帰させるように 設定しています。

switch_a(config)#bridge 1 storm-detect errdisable-recovery 30 switch_a(config)#

◆ storm-detect <bc|mc-bc> pps <0-100000> ポート毎にストーム検出するパケットの種類と閾値を設定します。

〈デフォルト設定〉

0 (制限無し)

<例>

下例では、Fe1ポートにて検出対象をブロードキャストパケットとし、 閾値を 50000pps に設定しています。

switch_a(config)#interface fe1
switch_a(config-if)#storm-detect bc pps 50000
switch_a(config)#

♦ bridge 1 address <MAC ADDRESS> discard vlan <VLAN ID>

指定した宛先 MAC アドレス、該当 VLAN に所属するトラフィックを受信ポートで破棄します。 ※"vlan <VLAN ID>"は省略可能です。

〈デフォルト設定〉

なし

<例>

下例では宛先 MAC アドレス"1111.2222.3333"を持つトラフィックを破棄します。

switch_a(config)#bridge 1 address 1111.2222.3333 discard switch_a(config)# ◆ mirror interface <IF NAME> direction <both receive transmit> 指定したポートの送受信トラフィックを他ポートへミラーリング(コピーして送信)します。

〈デフォルト設定〉

なし

〈例〉

下例ではポート2からの送信トラフィックをポート1(fe1)へミラーリングしています。

switch_a(config)#interface fe1
switch_a(config-if)#mirror interface fe2 direction transmit
switch_a(config-if)#

♦ link state track <group #>

指定したグループでリンクステートトラッキングを有効にします。

〈デフォルト設定〉

無効

〈例〉

下例では Group2 でリンクステートトラッキングを有効にしています。

switch_a(config)#link state track 2
switch_a(config)#

♦ link state group ⟨group #> ⟨upstream | downstream>

ポートをリンクステートトラッキングのグループに所属させ、上位リンク(Upstream)か下位リンク (Down stream)なのかを設定します。

〈デフォルト設定〉

無し

<例>

下例では、Fe1 ポートをグループ 2 に所属させ、上位リンクとして設定しています。

switch_a(config)#interface fe1
switch_a(config-if)#link state group 2 upstream
switch_a(config-if)#

◆ poe system-power-budget <LEVEL 1-800(W)> [EX74162/EX74262 のみ] スイッチが PoE にて供給可能な総電力量(パワーバジェット)を設定します。

〈デフォルト設定〉

73

<例>

下例ではパワーバジェットを 50W へ設定しています。

switch_a(config)#poe system-power-budget 50
switch_a(config)#

◆ poe enable [EX74162/EX74262 のみ]

各ポートで PoE を有効化します。

〈デフォルト設定〉

enable

〈例〉

下例ではポート 1(fe1)の PoE を無効化しています。

switch_a(config)#interface fe1 switch_a(config-if)#no poe enable switch_a(config-if)#

◆ poe power-classification enable

各ポートで PD クラス別に電力を供給します。

〈デフォルト設定〉

enable

<例>

下例ではポート 1(fe1)の PD クラス分けを無効化しています。

switch_a(config)#interface fe1 switch_a(config-if)#no poe power-classification enable switch_a(config-if)#

◆ poe fixed-power-limit <LEVEL 0-30> [EX74162/EX74262 のみ]

供給電力量(0-30W)を入力して該当するポートの PD への給電を行います。

- ※1. "poe power-classification enable"を設定している場合、本設定はできません。
- ※2. EX74162-0VT の場合は、0-15.4W の範囲で入力します。

〈デフォルト設定〉

なし

〈例〉

下例ではポート 1(fe1)への電力供給を 15.4W(クラス 1)へ設定しています。

```
switch_a(config)#interface fe1
switch_a(config-if)#poe fixed-power-limit 15.4
switch_a(config-if)#
```

◆ poe scheduling enable [EX74162/EX74262 のみ]

各ポートのスケジューリング(曜日/時間)による PD 装置への給電を有効化します。

〈デフォルト設定〉

なし

<例>

下例ではポート 1(fe1)へスケジューリングを設定しています。

```
switch_a(config)#interface fe1
switch_a(config-if)#poe scheduling enable
switch_a(config-if)#
```

◆ poe schedule-time <DAY: 1-6(1:SUN - 6:SAT> <HOUR: 0-23> [EX74162/EX74262 のみ] 各ポートのスケジューリング(曜日/時間)を設定します。

〈デフォルト設定〉

なし

〈例〉

下例ではポート 1(fe1)へ月曜、午前 8 時~12 時,午後 1 時~5 時までのスケジューリングを設定しています。<0~6 で曜日を指定します。>

switch_a(config)#interface fe1 switch_a(config-if)#poe schedule-time 1 8-12, 13-17 switch_a(config-if)#

5.2.7 Trunk コマンド

スイッチ間トランクリンクの設定を行います。

※ Trunking は、通信の増速ではなく、冗長化を目的としています。 また、Trunk したポートのうち、トラフィックを流すポートの選定は MAC アドレスと IP アドレスの 値を元に計算され、手動で設定することはできません。

◆ static-channel-group <1-3>

トランクリンクのグループ ID を設定します。

1-2:最大 4 ポートまで Fast Ethernet ポートで設定可能

3:最大 2 ポートまで Gigabit Ethernet ポート設定可能

〈デフォルト設定〉

なし

<例>

下例ではポート 1(fe1)をグループ ID=1 へしています。

switch_a(config)#interface fe1 switch_a(config-if)#static-channel-group 1 switch_a(config-if)#

◆ channel-group <LACP Channel> mode <active | passive> ポート毎に LACP の設定を行います。

〈デフォルト設定〉

なし

<例>

下例ではポート 2(fe2)を LACP チャネル 1 として、Active モードで設定しています。

switch_a(config)#interface fe1 switch_a(config-if)#channel-group 1 mode active switch_a(config-if)# ◆ lacp port-priority <1 - 65535>
LACP ポートプライオリティを設定します。

〈デフォルト設定〉

なし

〈例〉

下例ではポート 2(fe2)の LACP ポートプライオリティを"1"に設定しています。

switch_a(config)#interface fe1
switch_a(config-if)#lacp port-priority 1
switch_a(config-if)#

◆ lacp timeout <long | short>
LACP タイムアウトを設定します。

〈デフォルト設定〉

なし

<例>

下例ではポート 2(fe2)の LACP タイムアウトを"long"に設定しています。

switch_a(config)#interface fe1
switch_a(config-if)#lacp timeout long
switch_a(config-if)#

5.2.8 STP/Ring コマンド

スパニングツリー(STP/RSTP/MSTP)、または Ring(独自の冗長化プロトコルα -Ring)の設定を行います。

◆ bridge 1 protocol <PROTOCOL> vlan-bridge

使用する STP バージョンを選択します。

ieee: IEEE802.1D STP

mstp: IEEE802.1s MSTP

rstp: IEEE802.1w RSTP ring:: α -ring プロトコル

※rstp/ieee 設定時のみ"vlan-bridge"が必要です。

〈デフォルト設定〉

rstp

<例>

下例では MSTP へ設定しています。

switch_a(config)#bridge 1 protocol mstp
switch_a(config)#

<例 2>

下例では ieee へ設定しています。

switch_a(config)#bridge 1 protocol ieee vlan-bridge switch_a(config)# ◆ bridge 1 multiple-spanning-tree enable MSTP を有効化します。

〈デフォルト設定〉

なし

<例>

下例では MSTP を有効化しています。

switch_a(config)#bridge 1 multiple-spanning-tree enable switch_a(config)#

※無効化する場合、下記を入力します。

switch_a(config)#no bridge 1 multiple-spanning-tree enable bridge-forward

◆ bridge 1 rapid-spanning-tree enable RSTP を有効化します。

〈デフォルト設定〉

なし

<例>

下例では RSTP を有効化しています。

switch_a(config)#bridge 1 rapid-spanning-tree enable switch_a(config)#

※ 無効化する場合、"bridge-forward"を追加します。
switch_a(config)#no bridge 1 rapid-spanning-tree enable bridge-forward

◆ bridge 1 spanning-tree enable STP を有効化します。

〈デフォルト設定〉

なし

〈例〉

下例では STP を有効化しています。

switch_a(config)#bridge 1 spanning-tree enable switch_a(config)#

※無効化する場合、" bridge-forward"を追加します。
switch_a(config)#no bridge 1 spanning-tree enable bridge-forward

◆ bridge 1 priority <0-61440>
ブリッジプライオリティを 4096 の倍数で設定します。

〈デフォルト設定〉

32768

<例>

下例ではブリッジプライオリティを 4096 へ上げて設定しています。

switch_a(config)#bridge 1 priority 4096 switch_a(config)#

◆ bridge 1 hello-time <1-9> BPDU の送信間隔を設定します。

〈デフォルト設定〉

2

〈例〉

下例では Hello 送信間隔を1秒へ下げて設定しています。

switch_a(config)#bridge 1 hello-time 1
switch_a(config)#

♦ bridge 1 max-age <6-28>

BPDU の最大エージ秒数(ルートブリッジから BPDU が届かなくなったことを認識するまでの時間)を設定します。

〈デフォルト設定〉

20

<例>

下例では Max-age を 14 秒へ下げて設定しています。

switch_a(config)#bridge 1 max-age 14
switch_a(config)#

♦ bridge 1 forward-time <4-30>

各ポートの状態遷移(Listening⇒Learning, Learning⇒Forwarding)時間秒数を設定します。

〈デフォルト設定〉

15

<例>

下例では Forward-time を 12 秒へ下げて設定しています。

switch_a(config)#bridge 1 forward-time 12 switch_a(config)#

◆ spanning-tree link-type <shared | point-to-point>

RSTP/MSTP 使用時の各ポートのリンク種別を設定します。 shared:半二重リンク(高速状態遷移無効) point-to-point:全二重リンク(高速状態遷移有効)

〈入力モード〉

インタフェース

〈デフォルト設定〉

point-to-point

〈例〉

下例ではポート(fe1)の Link-type を shared へ設定しています。

switch_a(config)#interface fe1 switch_a(config-if)#spanning-tree link-type shared switch_a(config-if)#

◆ spanning-tree autoedge

RSTP/MSTP 使用時において各ポートのエッジポート(他の STP ブリッジが接続されていない末端のポート)の自動判別を有効化します。

〈入力モード〉

インタフェース

〈デフォルト設定〉

なし

〈例〉

下例ではポート(fe1)にてエッジポートの自動判別を有効化しています。

```
switch_a(config)#interface fe1
switch_a(config-if)#spanning-tree autoedge
switch_a(config-if)#
```

spanning-tree edgeport

RSTP/MSTP 使用時に置いて各ポートをエッジポート(他の STP ブリッジが接続されていない末端のポート)として設定します。

〈入力モード〉

インタフェース

〈デフォルト設定〉

なし

<例>

下例ではポート(fe1)をエッジポートとして設定しています。

```
switch_a(config)#interface fe1
switch_a(config-if)#spanning-tree edgeport
switch_a(config-if)#
```

◆ bridge 1 region <REGION_NAME>

MSTP 使用時においてブリッジが所属する MST リージョン名を設定します。

〈入力モード〉

MST

〈デフォルト設定〉

なし

<例>

下例では MST リージョン名 "region1"を設定しています。

switch_a(config)#spanning-tree mst configuration switch_a(config-mst)#bridge 1 region region1 switch_a(config-mst)#

◆ bridge 1 revision <REVISION_NUM>

MSTP 使用時においてブリッジが所属するリビジョン番号を設定します。

※ 同一 MST リージョン内のブリッジは同一リビジョン番号である必要があります。

〈入力モード〉

MST

〈デフォルト設定〉

なし

<例>

下例ではリビジョン番号"1"へ設定しています。

switch_a(config)#spanning-tree mst configuration switch_a(config-mst)#bridge 1 revision 1 switch_a(config-mst)#

◆ bridge 1 max-hops <MAX_HOP_COUNT>

MSTP 使用時において BPDU が伝播可能な最大ホップ数を設定します。

〈入力モード〉

グローバルコンフィグ

〈デフォルト設定〉

20

〈例〉

下例では Max-hops を"30"へ設定しています。

switch_a(config)#bridge 1 max-hops 30
switch_a(config)#

◆ bridge 1 instance <INSTANCE_ID> vlan <VLAN_ID>

MSTP 使用時においてインスタンスと VLAN のマッピングを設定します。

〈入力モード〉

MST

〈デフォルト設定〉

なし

<例>

下例では VLAN10 と VLAN20 をインスタンス 1 へ設定しています。

switch_a(config)#spanning-tree mst configuration switch_a(config-mst)#bridge 1 instance 1 vlan 10,20 switch_a(config-mst)#

- ◆ bridge 1 instance <INSTANCE_ID> priority <PRIORITY_NUM:0-61440>

 MSTP 使用時においてインスタンス内のブリッジプライオリティを設定します。
- ※ 設定単位は 4096 の倍数です。

〈入力モード〉

MST

〈デフォルト設定〉

32768

<例>

下例ではインスタンス 1 におけるプライオリティを"0"へ設定しています。

switch_a(config)#spanning-tree mst configuration switch_a(config-mst)#bridge 1 instance 1 priority 0 switch_a(config-mst)#

◆ bridge 1 instance <INSTANCE_ID>

MSTP 使用時においてインタフェースが所属するインスタンスを割り当てます。

〈入力モード〉

インタフェース

〈デフォルト設定〉

なし

<例>

下例では fe1 をインスタンス 1 へ所属させています。

switch_a(config)#interface fe1
switch_a(config-if)#bridge 1 instance 1
switch_a(config-if)#

◆ bridge 1 instance <INSTANCE_ID> priority <PRIORITY:0-240>

MSTP 使用時においてインスタンス内のフォワーディングポート、ルートポートを明示的に選出する場合にポートプライオリティを設定します。

※ 低い値=高プライオリティとなり、設定単位は 16 の倍数です。

〈入力モード〉

インタフェース

〈デフォルト設定〉

なし

〈例〉

下例ではインスタンス 1 へ所属する fe1 のポートプライオリティを 128 へ設定しています。

switch_a(config)#interface fe1 switch_a(config-if)#bridge 1 instance 1 priority 128 switch_a(config-if)#

◆ bridge 1 instance <INSTANCE_ID> path-cost <PATH_COST:0-200000000>

MSTP 使用時においてインスタンス内のフォワーディングポート、ルートポートを明示的に選出する場合にポートのパスコストを設定します。

※ 低い値=高プライオリティとなります。

〈入力モード〉

インタフェース

〈デフォルト設定〉

なし

<例>

下例ではインスタンス 1 へ所属する fe1 のポートのパスコストを 128 へ設定しています。

switch_a(config)#interface fe1 switch_a(config-if)#bridge 1 instance 1 path-cost 128 switch_a(config-if)#

◆ bridge 1 ring <enable | disable>

α -Ring プロトコルを有効化します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈例〉

下例ではα -Ring プロトコルを有効化/無効化しています。

switch_a(config)#bridge 1 ring enable
switch_a(config)#
switch_a(config)#bridge 1 ring disable
switch_a(config)#

α -Ring を構成するポートを設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

<例>

下例では fe1,fe2 ポート上でα -Ring プロトコルを有効化しています。

switch_a(config)#ring set-port fe1 fe2
switch_a(config)#

◆ ring-coupling <enable | disable>

Ring-Coupling 機能を"Enable(有効)"または"Disable(無効)"にします。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

<例>

下例では Ring-Coupling を有効化しています。

switch_a(config)#ring-coupling enable
switch_a(config)#

◆ ring set-coupling-port <IFNAME1 IFNAME2>

Ring-Coupling ポートとして使用するポートを設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

<例>

下例では Fe2、Fe4 を Ring-Coupling ポートとして設定しています。

switch_a(config)#ring set-coupling-port fe2 fe4 switch_a(config)#

♦ show ring-coupling port-state

Ring-Coupling ポートの動作状態を確認します。

♦ chain port enable

α -Chain ポートとして使用するポートを設定します。

〈入力モード〉

インタフェース

〈デフォルト設定〉

なし

<例>

下例では Fe5 ポートをα -Chain ポートとして設定しています。

switch_a(config)#interface fe5
switch_a(config-if)#chain port enable
switch_a(config-if)#

◆ show chain port-state

α -Chain ポートの動作状態を確認します。

5.2.9 VLAN コマンド

802.1Q VLAN、ポート VLAN の設定を行います。

♦ vlan database

VLAN コンフィグレーションモードへ移行します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし(全ポート VLAN1 Untagged ポートとして所属)

<例>

下例では、VLAN モードへ移行しています。

switch_a(config)#vlan database switch_a(config-vlan)#

◆ vlan <VLAN_ID> bridge 1 name <VLAN_NAME> state enable/disable VLAN の追加、削除を行います。

〈入力モード〉

VLAN コンフィグレーション

〈デフォルト設定〉

なし(VLAN1のみ)

<例>

下例では VLAN2 の追加、削除しています。

switch_a(config)#vlan database switch_a(config-vlan)#vlan 2 bridge 1 name vlan2 state enable switch_a(config-vlan)# switch_a(config-vlan)#vlan 2 bridge 1 name vlan2 state disable switch_a(config-vlan)#

◆ switchport mode access

アクセスポートの設定(Untagged フレームのみ透過)を行います。

〈入力モード〉

インタフェース

〈デフォルト設定〉

Hybrid

〈例〉

下例では fe1 をアクセスポートとして設定しています。

switch_a(config)#interface fe1
switch_a(config-if)#switchport mode access
switch_a(config-if)#

switchport mode hybrid

ハイブリッドポート(Untagged/Tagged フレーム透過)の設定を行います。

〈入力モード〉

インタフェース

〈デフォルト設定〉

Hybrid

<例>

下例では fe1 をハイブリッドポートとして設定しています。

switch_a(config)#interface fe1
switch_a(config-if)#switchport mode hybrid acceptable-frame-type all
switch_a(config-if)#

◆ switchport mode trunk

トランクポートの設定(Tagged フレームのみ透過))を行います。

〈入力モード〉

インタフェース

〈デフォルト設定〉

Hybrid

<例>

下例では fe1 をトランクポートとして設定しています。

switch_a(config)#interface fe1
switch_a(config-if)#switchport mode trunk
switch_a(config-if)#

- ◆ switchport hybrid allowed vlan all ハイブリッドポート上で全ての VLAN フレームを透過させます。
- ◆ switchport hybrid allowed vlan add ⟨VLAN_ID⟩ egress-tagged enable/disable ハイブリッドポートを透過させる VLAN を設定し、出力時にタグ付加あり(egress-tagged enable)、タグ付加なし(egress-tagged disable)を設定します。
- ◆ switchport hybrid allowed vlan remove ⟨VLAN_ID⟩ ハイブリッドポートを透過させる VLAN を削除します。

〈入力モード〉

インタフェース

〈デフォルト設定〉

なし(VLAN1 Tagged/Untagged フレーム透過)

〈例〉

下例では fe1 ポートにて全ての VLAN フレームを透過させ、fe2 ポートにて VLAN100 のフレーム ヘタグ付加、VLAN200 のフレームはタグ付加なしとして設定後、VLAN100 を削除しています。

switch_a(config)#interface fe1
switch_a(config-if)#switchport hybrid allowed vlan all
switch_a(config-if)#interface fe2
switch_a(config-if)#switchport hybrid allowed vlan add 100 egress-tagged enable
switch_a(config-if)#switchport hybrid allowed vlan add 200 egress-tagged disable
switch_a(config-if)#switchport hybrid allowed vlan remove 100
switch_a(config-if)#

- ◆ switchport trunk allowed vlan all トランクポート上で全ての VLAN フレームを透過させます。
- ◆ switchport trunk allowed vlan add <VLAN_ID:2-4096> トランクポートを透過させる VLAN を設定します。
- ◆ switchport trunk allowed vlan except <VLAN_ID>
 トランクポートを透過させる VLAN の例外(この VLAN 以外透過)を設定します。
- ◆ switchport trunk allowed vlan remove ⟨VLAN_ID⟩ トランクポートを透過させる VLAN を削除します。

〈入力モード〉

インタフェース

〈デフォルト設定〉

なし

〈例〉

下例では fe1 トランクポートにて全ての VLAN フレームを透過させ、fe2 ポートにて VLAN100、200,300 の VLAN フレームの透過設定後、VLAN100を削除しています。

switch_a(config)#interface fe1
switch_a(config-if)#switchport trunk allowed vlan all
switch_a(config-if)#interface fe2
switch_a(config-if)#switchport trunk allowed vlan add 100,200,300
switch_a(config-if)# switchport trunk allowed vlan remove 100
switch_a(config-if)#

switchport trunk allowed vlan remove <VLAN_ID>

ポートベース VLAN の設定(各ポートのデフォルト VLAN 設定)を行います。

〈入力モード〉

インタフェース

〈デフォルト設定〉

なし(VLAN1)

〈例〉

下例では fe1 のデフォルト VLAN=2 へ設定後、削除しています。

switch_a(config)#interface fe1
switch_a(config-if)#switchport portbase add vlan 2
switch_a(config-if)#switchport portbase remove vlan 2
switch_a(config-if)#

5.2.10 QoS コマンド

QoS(802.1p(L2)、DSCP(L3)フィールド)による優先制御の設定を行います。

mls qos enable

QoS 設定を有効化します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし(無効)

〈例〉

下例では QoS を有効化しています。

switch_a(config)#mls qos enable
switch_a(config)#

mls qos trust cos/dscp

優先制御にて参照するフィールド(cos(L2)、dscp(L3))を設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし(無効)

<例>

下例では CoS(L2)フィールドによる優先制御を有効化しています。

switch_a(config)#mls qos trust cos switch_a(config)#

priority-queue out

優先制御にて使用するスケジューリング方式を Strict Priority へ設定します。

※ Queue#3 内のフレームが最優先で送信され、Queue#0~2 内のフレームは WRR 設定に従って 送信されます。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈例〉

下例では Strict Priority スケジューリング方式を有効化しています。

switch_a(config)#priority-queue out switch_a(config)#

◆ wrr-queue bandwidth <Queue0_weight Queue1_weight Queue2_weight Queue3_weight >
※ weight 値範囲= 1 −55

優先制御にて使用するスケジューリング方式を WRR(Weighted Round Robin)へ設定し、各キュー(0~3)へ重み付けによる送信比率を設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈例〉

下例ではWRRスケジューリング方式を有効化し、各キュー(0:1:2:3)からの重み付けによる送信 比率をそれぞれ(1:2:4:8)として設定しています。

switch_a(config)#wrr-queue bandwidth 1 2 4 8 switch_a(config)#

◆ wrr-queue cosmap <Queue 番号> <CoS 値>

優先制御にて使用するキュー/CoS 値の対応付けを設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈例〉

下例では CoS 値の(0,1/2,3/4,5/6,7)のフレームを各キュー(0/1/2/3)へ割り当てる設定(デフォルト値)をしています。

switch_a(config)#mls qos enable
switch_a(config)#wrr-queue bandwidth 1 2 4 8
switch_a(config)#wrr-queue cos-map 0 0 1
switch_a(config)#wrr-queue cos-map 1 2 3
switch_a(config)#wrr-queue cos-map 2 4 5
switch_a(config)#wrr-queue cos-map 3 6 7
switch_a(config)#mls qos trust cos
switch_a(config)#

◆ mls qos map dscp-queue 〈Queue 番号〉 〈DSCP 値〉 優先制御にて使用するキュー/DSCP 値の対応付けを設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈例〉

下例では DSCP 値(0-62)のパケットをキュー(0)、DSCP 値(63)のパケットをキュー(3)へ割り 当てる設定(デフォルト値)をしています。

switch_a(config)#mls qos enable
switch_a(config)#wrr-queue bandwidth 1 2 4 8
switch_a(config)#mls qos map dscp-queue 0 1 2 3 4 5 6 7 to 0
switch_a(config)#mls qos map dscp-queue 8 9 10 11 12 13 14 15 to 0
switch_a(config)#mls qos map dscp-queue 16 17 18 19 20 21 22 23 to 0
switch_a(config)#mls qos map dscp-queue 24 25 26 27 28 29 30 31 to 0
switch_a(config)#mls qos map dscp-queue 32 33 34 35 36 37 38 39 to 0
switch_a(config)#mls qos map dscp-queue 40 41 42 43 44 45 46 47 to 0
switch_a(config)#mls qos map dscp-queue 48 49 50 51 52 53 54 55 to 0
switch_a(config)#mls qos map dscp-queue 56 57 58 59 60 61 62 to 0
switch_a(config)#mls qos map dscp-queue 63 to 3
switch_a(config)#mls qos trust dscp
switch_a(config)#mls qos trust dscp

5.2.11 SNMP コマンド

SNMP によるマネージメント設定を行います。

◆ snmp-server enable

SNMP を有効化します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈例〉

下例では SNMP を有効化しています。

switch_a(config)#snmp-server enable
switch_a(config)#

◆ snmp-server description <DESCRIPTION>

SNMP 管理用の名称等を任意入力します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

<例>

下例では SNMP 管理名を"Switch_A"として設定しています。

switch_a(config)#snmp-server description Switch_A switch_a(config)#

◆ snmp-server location 〈LOCATION〉 SNMP 管理用に該当スイッチの設置場所名等を任意入力します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈例〉

下例では設置場所を"Tokyo_Office"として設定しています。

switch_a(config)#snmp-server location Tokyo_Office
switch_a(config)#

◆ snmp-server contact 〈CONTACT〉 SNMP 管理者名等を任意入力します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

<例>

下例では管理者名を"Operator"として設定しています。

switch_a(config)#snmp-server contact Operator switch_a(config)# ◆ snmp-server trap-community <1-5> <COMMUNITY_STRING> SNMP TRAP コミュニティ名(最大5)を設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈例〉

下例では TRAP コミュニティ名を"snmptrap"として設定しています。
switch_a(config)#snmp-server trap-community 1 snmptrap
switch_a(config)#

◆ snmp-server trap-ipaddress ⟨IP_ADDRESS⟩

TRAP を受信する管理端末の IP アドレスを設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

<例>

下例では TRAP を受信する管理端末の 1 に IP アドレスを"192.168.1.00"として設定しています。 switch_a(config)#snmp-server trap-ipaddress 1 192.168.1.100 switch_a(config)#

◆ snmp-server trap-type enable <TRAP_TYPE> 送信する TRAP 種別を設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈例〉

下例では送信する TRAP 種別を linkDown へ設定しています。 switch_a(config)#snmp-server trap-type enable linkDown switch_a(config)#

◆ snmp-server community get 〈COMMUNITY_NAME〉 SNMP GET コミュニティ名を設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

<例>

下例では SNMP GET コミュニティ名を"public"へ設定しています。
switch_a(config)#snmp-server community get public
switch_a(config)#

◆ snmp-server community set 〈COMMUNITY_NAME〉 SNMP SET コミュニティ名を設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈例〉

下例では SNMP SET コミュニティ名を"private"へ設定しています。
switch_a(config)#snmp-server community set private
switch_a(config)#

◆ snmp-server v3user <USER_NAME> <ro | rw> noauth

SNMPv3 "ro(Read-Only)"、または"rw(Read-Write)"権限にて"noauth(認証なし)"のユーザ名を設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈例〉

下例では SNMPv3 Read-Only 権限のユーザ名を設定しています。 switch_a(config)#snmp-server v3-user SNMPv3 ro noauth switch_a(config)# ◆ snmp-server v3user <USER_NAME> <ro | rw> auth <md5 | sha> <PASSWORD>
SNMPv3 "ro(Read-Only)"、または"rw(Read-Write)"権限にて"auth(MD5 または SHA パスワード認証)"を行うユーザ名を設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

<例>

下例では Read-Write 権限にて MD5 パスワード(0123)による認証を行うユーザ" SNMPv3"を設定しています。

switch_a(config)#snmp-server v3-user SNMPv3 rw auth md5 0123 switch_a(config)#

◆ snmp-server v3user <USER_NAME> <ro | rw> priv <md5 | sha> <PASSWORD> des <PASS_PHRASE>

SNMPv3 "ro(Read-Only)"、または"rw(Read-Write)"権限にて"auth(MD5 または SHA によるパスワード認証)"および DES 暗号化を行うユーザ名を設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈例〉

下例では Read-Write 権限にて MD5 パスワードによる認証、および暗号化を行うユーザ" SNMPv3"を設定しています。

switch_a(config)#snmp-server v3-user SNMPv3 rw priv md5 Password des PrivacyPassPhrase switch_a(config)#

5.2.12 802.1X コマンド

802.1X によるポート認証設定を行います。

◆ dot1x system-auth-ctrl 802.1X 認証を有効化します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈例〉

下例では 802.1X 認証を有効化しています。

switch_a(config)#dot1x system-auth-ctrl
switch_a(config)#

◆ radius-server host <IP_ADDRESS> auth-port <PORT#> key <SHARED_SECRET_KEY> timeout <1-1000 seconds> retransmit <1-100 Retry>

RADIUS サーバの IP アドレス、認証用ポート番号(auth-port)、サーバ/クライアント間の共有暗号鍵(key)、サーバから応答がない場合のタイムアウト時間(timeout)、タイムアウト後の認証要求の再送回数(retransmit)を設定します。

〈入力モード〉

グローバルコンフィグレーション

<例>>

下例では RADIUS サーバの IP アドレス(192.168.1.100)、認証用ポート番号(1812)、共有暗号鍵 (secretKey)、タイムアウト時間(10 秒)、認証要求の再送回数(5 回)を設定しています。

switch_a(config)#radius-server host 192.168.1.100 auth-port 1812 key secretKey timeout 10 retransmit 5

switch_a(config)#

- ◆ dot1x port-control <auto | force-authorized | force-unauthorized> 各ポートの X.802.1 認証方法を設定します。
- ▶ auto: X.802.1 認証を有効化します。
- ▶ force-authorized:強制的に認証可としてアクセス許可します。
- ▶ force-unauthorized:強制的に認証不可としてアクセス許可します。

〈入力モード〉

インターフェースコンフィグレーション

〈デフォルト設定〉

なし

<例>

下例では"fe1"ポートの X.802.1 認証を有効化しています。

switch_a(config)#interface fe1
switch_a(config-if)#dot1x port-control auto
switch_a(config-if)#

♦ dot1x reauthentication

各ポートの再認証を有効化します。

〈入力モード〉

インターフェースコンフィグレーション

〈デフォルト設定〉

なし

<例>

下例では"fe1"ポートの再認証を有効化しています。

switch_a(config)#interface fe1 switch_a(config-if)#dot1x reauthentication switch_a(config-if)# ◆ dot1x timeout re-authperiod <1-4294967295> 各ポートの再認証を有効化します。

〈入力モード〉

インターフェースコンフィグレーション

〈デフォルト設定〉

なし

<例>

下例では"fe1"ポートの再認証(1時間毎)を有効化しています。

switch_a(config)#interface fe1 switch_a(config-if)#dot1x timeout re-authperiod 3600 switch_a(config-if)#

5.2.13 LLDP コマンド

LLDP の設定を行います。

♦ Ildp enable

LLDP を有効化します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

無効

〈例〉

下例では LLDP を有効化しています。

switch_a(config)#lldp enable
switch_a(config)#

♦ Ildp holdtime multiplier <1-10>

受信装置が情報を保持する時間(TTL)を設定します。ここに入力した値*Tx Interval の値=TTL で計算されます。

例えば、Holdtime multiplier=4、Tx Interval=30 の場合、TTL は 120 になります。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

4

〈例〉

下例では LLDP Holdtime multiplier を"5"に設定しています。

switch_a(config)#IIdp holdtime multiplier 5
switch_a(config)#

♦ Ildp txinterval <5-32768>

LLDP フレームの送信間隔を設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

30

〈例〉

下例では LLDP フレームの送信間隔を"40"秒に設定しています。

switch_a(config)#IIdp txinterval 40
switch_a(config)#

◆ IIdp tlv-global <TLV>

LLDP にて送信する情報を設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈例〉

下例では、LLDPで Port Descriptionの情報を送信するよう設定しています。

switch_a(config)#IIdp tlv-global port-descr switch_a(config)#

◆ IIdp tx-pkt

ポート毎に LLDP を送信するかどうか設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

<例>

下例では、Fe1 で LLDP を送信するように設定しています。

switch_a(config)#interface fe1 switch_a(config-if)#lldp tx-pkt switch_a(config-if)#

♦ Ildp rcv-pkt

ポート毎に LLDP を受信するかどうか設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈例〉

下例では、Fe1 で LLDP を受信するように設定しています。

switch_a(config)#interface fe1
switch_a(config-if)#lldp rcv-pkt

♦ Ildp notification

LLDP 情報に変化があった際に SNMP にて通知するかどうかを設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

<例>

下例では、Fe1 で受け取った LLDP 情報に変化があった際に SNMP 通知を行うよう設定しています。

switch_a(config)#interface fe1
switch_a(config-if)#lldp notification
switch_a(config-if)#

5.2.14. GVRP コマンド

GVRP による動的な VLAN 設定情報の設定を行います。

◆ set gvrp enable bridge <1> GVRP を有効化します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈無効化コマンド〉

set gvrp disable bridge <1>

<例>

下例では GVRP を有効化しています。

switch_a(config)#set gvrp enable bridge 1
switch_a(config)#

◆ set gvrp dynamic-vlan-creation enable bridge <1> GVRP による隣接スイッチ間のダイナミック VLAN 生成を有効化します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈無効化コマンド〉

set gvrp dynamic-vlan-creation disable bridge <1>

〈例〉

下例ではダイナミック VLAN の生成を有効化しています。

switch_a(config)#set gvrp dynamic-vlan-creation enable bridge 1
switch_a(config)#

set port gvrp enable

GVRP による隣接スイッチ間のダイナミック VLAN 生成をポート単位で有効化します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈無効化コマンド〉

set port gvrp disable

<例>

下例では"fe1"ポート上で GVRP を有効化しています。

switch_a(config)#set port gvrp enable fe1
switch_a(config)#

- ◆ set gvrp registration < normal | fixed | forbidden > <IF_NAME>
 GVRP による隣接スイッチ間のダイナミック VLAN 生成モードをポート単位で設定します。
- Normal:トランクリンク上で許可されている VLAN 設定情報のみ交換します。
- ▶ Fixed:スイッチ上で設定されている全ての VLAN 設定情報を交換します。
- ➤ Forbidden: VLAN1 設定情報のみ交換します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

Normal

〈例〉

下例では"fe1"ポートを"Fixed"へ設定しています。

switch_a(config)#set gvrp registration fixed fe1
switch_a(config)#

5.2.15. IGMP コマンド

IGMP によるマルチキャスト通信設定を行います。

• ip igmp snooping querier

IGMP クエリア機能を有効化します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈例〉

下例では"VLAN100"にて IGMP Snooping を有効化しています。

switch_a(config)#ip igmp snooping querier switch_a(config)#

ip igmp snooping enable

IGMP によるマルチキャスト通信の聴取をスイッチまたは、VLAN 単位で有効化します。

〈入力モード〉

グローバルコンフィグレーション、または VLAN インタフェース

〈デフォルト設定〉

なし

<例>

下例では"VLAN100"にて IGMP Snooping を有効化しています。

switch_a(config)#interface vlan1.100 switch_a(config-if)#ip igmp snooping enable switch_a(config-if)#

◆ ip igmp version <1 | 2 | 3 > IGMP Version を設定します。

〈入力モード〉

VLAN インタフェース

〈デフォルト設定〉

なし

<例>

下例では"VLAN100"にて IGMP Version2を設定しています。

```
switch_a(config)#interface vlan1.100
switch_a(config-if)#ip igmp version 2
switch_a(config-if)#
```

♦ ip igmp snooping fast-leave

VLAN インタフェースにて、IGMP Snooping Fast Leave(マルチキャストグループからの高速脱退)機能を有効化します。

〈入力モード〉

VLAN インタフェース

〈デフォルト設定〉

なし

<例>

下例では"VLAN100"にて IGMP Snooping Fast Leave 機能を有効化しています。

```
switch_a(config)#interface vlan1.100
switch_a(config-if)#ip igmp snooping fast-leave
switch_a(config-if)#
```

♦ ip igmp query-interval <1-18000>

VLAN インタフェースにて、IGMP クエリ送信間隔を設定します。

〈入力モード〉

VLAN インタフェース

〈デフォルト設定〉

125 秒

〈例〉

下例では"VLAN100"にて IGMP クエリ送信間隔を 120 秒へ設定しています。

switch_a(config)#interface vlan1.100 switch_a(config-if)#ip igmp query-interval 120 switch_a(config-if)#

♦ ip igmp query-max-response-time <1-240>

VLAN インタフェースにて、IGMP クエリへの最大応答間隔を設定します。

〈入力モード〉

VLAN インタフェース

〈デフォルト設定〉

10 秒

<例>

下例では"VLAN100"にて IGMP クエリへの最大応答時間を 15 秒へ設定しています。

switch_a(config)#interface vlan1.100 switch_a(config-if)#ip igmp query-max-response-time 15 switch_a(config-if)#

♦ ip igmp snooping report-suppression

VLAN インタフェースにて、IGMP レポート抑制機能(v1/v2)を設定します。

〈入力モード〉

VLAN インタフェース

〈デフォルト設定〉

有効

<例>

下例では"VLAN100"にて IGMP レポート抑制機能を無効化しています。

switch_a(config)#interface vlan1.100 switch_a(config-if)#no ip igmp snooping report-suppression switch_a(config-if)#

5.2.16. NTP 関連コマンド

NTP による時間同期の設定を行います。

◆ set clock < YEAR | MONTH | DAY | HOUR | MUNITE | SECOND > 手動でスイッチのシステム時間を設定します。

〈入力モード〉

Enable モード

〈デフォルト設定〉

なし

〈例〉

下例では 2010 年 9 月 29 日 19 時 30 分 0 秒へ設定しています。

switch_a#set clock 2010 9 29 19 30 0 switch_a#

◆ ntp enable

NTP による時間同期を有効化します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

<例>

下例では NTP を有効化しています。

switch_a(config)#ntp enable
switch_a(config)#

◆ ntp server <IP_ADDRESS>

同期する NTP サーバの IP アドレスを設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈例〉

下例では NTP サーバ(192.168.1.1)を設定しています。

switch_a(config)#ntp server 192.168.1.1
switch_a(config)#

◆ ntp sync-time

設定した NTP サーバとの同期処理を実行します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

<例>

下例では NTP サーバとの同期を実行しています。

switch_a(config)#ntp sync-time
switch_a(config)#

◆ ntp polling-interval <1-10080>

設定した NTP サーバとの同期処理実行間隔(分)を設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈例〉

下例では NTP サーバとの同期間隔を 60 分へ設定しています。

switch_a(config)#ntp polling-interval 60
switch_a(config)#

◆ clock timezone <TIME_ZONE> <±1-23>

タイムゾーンの設定を行います。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

UCT -0 (Universal Cordinated Time)

〈例〉

下例ではタイムゾーン(JST+9 時間)へ設定しています。

switch_a(config)#clock Timezone JST 9
switch_a(config)#

5.2.17. DHCP 関連コマンド

DHCP 関連の設定を行います。

♦ dhcp-server enable

DHCP サーバを有効にします。

〈入力モード〉

インタ-フェースコンフィグレーション

〈デフォルト設定〉

無効

<例>

下例では、VLAN1で DHCP サーバを有効にしています。

switch_a(config)#interface vlan1.1
switch_a(config-if)#dhcp-server enable
switch_a(config-if)#

- ◆ dhcp-server range <start IP> <end IP>
- ◆ dhcp-server subnet-mask <subnet mask>
- ♦ dhcp-server gateway <IP address>
- ♦ dhcp-server dns 1 <IP address>
- ♦ dhcp-server dns 2 ⟨IP address⟩
- ◆ dhcp-server lease-time <0-864000> DHCP サーバの設定を行います。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

なし

〈例〉

下例では DHCP サーバの割り当て IP レンジ"192.168.1.50 - 100"、サブネットマスク"255.255.255.0"、デフォルトゲートウェイ"192.168.1.254"に設定しています。

switch_a(config)#dhcp-server range 192.168.1.50 192.168.1.100 switch_a(config)#dhcp-server subnet-mask 255.255.255.0 switch_a(config)#dhcp-server gateway 192.168.1.254 switch_a(config)#

♦ dhcprelay enable

DHCP リレーを有効にします。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

無効

〈例〉

下例では、VLAN1 で DHCP サーバを有効にしています。

switch_a(config)#dhcprelay enable
switch_a(config)#

♦ dhcprelay remote-id <ip-address | mac-address>

DHCP リレーのリモート ID を"IP アドレス"または"MAC アドレス"から設定します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

無効

〈例〉

下例では、リモート ID を MAC アドレスにしています。

switch_a(config)#dhcprelay remote-id mac-address switch_a(config)# ◆ dhcprelay serverip 〈IP address〉 DHCP サーバの IP アドレスを入力します。

〈入力モード〉

グローバルコンフィグレーション

〈デフォルト設定〉

無効

<例>

下例では、DHCP サーバ IP を"192.168.1.254"に設定しています。

switch_a(config)#dhcprelay serverip 192.168.1.254 switch_a(config)#

5.3 SNMP による管理

SNMP & RMON 管理

本章は、本製品の Simple Network Management Protocol(SNMP)および Remote Monitoring (RMON)の性能について説明します。

概要

RMON は、Remote Monitoring MIB (Management Information Base) の略です。遠隔からのネットワーク監視方法について定義している Internet Engineering Task force (IETF)ドキュメント RFC 2819 に定義されているシステムです。

RMON は一般的には RMON probe および管理ワークステーションの 2 つのコンポーネントで構成されています。

-RMON probe は連続的に LAN セグメントまたは VLAN の統計を収集するインテリジェントデバイスまたはソフトウェアエージェントです。この収集したデータをリクエスト、またはあらかじめ設定された閾値に到達したら管理ワークステーションに転送します。

- 管理ワークステーションは RMON probe が集めた統計を収集します。ワークステーションは probe と同じネットワーク内に存在するか、probe との帯域内・帯域外接続も可能です。

本製品の RMON は、ネットワーク管理者にパラメータの設定および MIB-II、Bridge MIB、および ROMN MIB に定義されている統計カウンターの一見が可能です。 RMON のアクティビティーはグラフィカルユーザーインターフェースで SNMP ネットワーク管理アプリケーションを実施しているネットワーク管理ステーションで行われています。

SNMP エージェントおよび MIB-2(RFC 1213)

スイッチの管理 CPU を経由する SNMP-エージェントは、以下の動作を行います。

- -SNMP GET/GET NEXT フレームメッセージに従って、ソフトウェアモジュールの様々なレイヤーから MIB カウンターを回収
- -SNMP SET フレームメッセージに従って、MIB の値を設定
- -特定の MIB カウンターの閾値に到達、または以下のようなトラップコンディションが満たされた場合、MP TRAP フレームメッセージをネットワーク管理ステーションへ伝送

WARM START

COLD START

LINK UP

LINK DOWN

AUTHENTICATION FAILURE

RISING ALARM

FALLUING ALRAM

TOPOLOGY ALARM

MIB-II は TCP/IP プロトコルの様々なレイヤーの管理可能なオブジェクトー式を定義します。 レイヤー1 から 4 までの管理可能なオブジェクトをカバーするため、MIB-II は全てのネットワーク 産業のベンダーにサポートされている主要な SNMP MIB となっています。本製品は SNMP エー ジェントおよび MIB-II の complete implementation をサポートします。

RMON MIB(RFC 2819)および Bridge MIB(RFC 1493)

本製品は本体のチップセットにハードウェアベース RMON カウンターを提供しています。スイッチ管理 CPU は、RMON MIB 定義に準拠するフォーマットで統計を収集するために、これらのカウンターを定期的に記録します。

RMON Groups Supported

本製品は、以下の RFC 2819 に定義されている RMON MIB グループをサポートします。

- -RMON 統計グループ:監視されているスイッチのポートの利用およびエラー統計を保持
- -RMON ヒストリーグループ:様々な統計グループの定期的な統計サンプルを収集、保存
- -RMON アラームグループ:ネットワーク管理者に MIB の値のいかなる信号の閾値を定義することを可能にします。信号は Low Threshold、High Threshold、または両方に関連させることができます。トリガーは特定の MIB の値が閾値を上回るか下回った場合、信号を引き起こします。
- -RMON イベントグループ: 信号を基にして、ネットワーク管理者がアクションを定義することを可能にします。 SNMP トラップは RMON 信号がトリガーした時に発生します。 ネットワーク管理 ステーションでのアクションは特定のネットワーク管理アプリケーションに左右されます。

Bridge Group Supported

本製品は、以下の4つのBridge MIB(RFC 1493)グループをサポートします。

- -dot1dBase クループ:全てのタイプのブリッジに適用可能なオブジェクトを含む義務的なグループ
- -dot1dStp グループ: Spanning Tree プロトコルに関してブリッジの状態を表示するオブジェクトを含みます。ノードが Spanning Tree プロトコルを実施しない場合、このグループは実施されません。このグループは Spanning Tree プロトコルを実施できるトランスペアレントのみ、source route、または SRT ブリッジに適用できます。
- -dot1dTp グループ: entity のトランスペアレントブリッジジングステータスを説明するオブジェクトを含みます。このグループは宛先アドレスのフィルタリングを行うタイプのブリッジに適用

できます。

-dot1dStatic グループ: entity の宛先アドレスのフィルタリング状態を説明するオブジェクトを含みます。このグループは宛先アドレスのフィルタリングを実行するタイプのブリッジに適用できます。

SNMP ベースネットワーク管理

外部の SNMP ベースのアプリケーションを使用してスイッチの設定および管理をすることも可能です。この管理方法は、スイッチの SNMP エージェントおよび SNMP ネットワーク管理ステーションが同じコミュニティーストリングを使用している必要があります。この管理方法では get community string と set community string の 2 つのコミュニティーストリングを使用しています。SNMP ネットワーク管理ステーションが set community string のみ知っている場合、MIB に読み書きすることができます。しかし、get community string のみ知っている場合、MIB を読むことしかできません。初期設定の get と set community string は公開しています。

プロトコル

本製品は、以下のプロトコルをサポートします。

Simple Network Management Protocol (SNMP)

SNMP はマルチベンダーIP ネットワーク向けの標準化された管理プロトコルです。メッセージの初期化、および報告デバイスとデータ収集プログラム間の情報伝送をプロトコルに可能にするトランザクションベースのクエリをサポートします。また、SNMP はユーザーデータグラムプロトコル(UDP)を経由し、コネクションレスモードサービスを提供します。

管理アーキテクチャー

全ての管理アプリケーションモジュールは、同じメッセージングアプリケーションプログラミングインターフェース(MAPI)を使います。1つの MAPI で統一することにより、1つの方法を用いて設定されるパラメーター(例:console port)は、瞬時に他の管理方法を表示します(例:ウェブブラウザのSNMP エージェント)。

本製品の管理アーキテクチャーは、IEEE のオープンスタンダードに準拠します。よって、本製品はこのオープンスタンダードに準拠するその他のソリューションと互換性があり、同時に使用することが可能であることを意味します。

6. 製品仕様

製品名	EX74062-0VT	
	IEEE 802.3 10BASE-T	
	IEEE 802.3u 100BASE-TX	
	IEEE 802.3ab 1000BASE-T	
	IEEE 802.3z 1000BASE-SX/LX/BX	
	IEEE 802.3x Flow Control	
規格	IEEE 802.1p CoS	
	IEEE 802.1Q VLAN	
	IEEE 802.1s Multiple Spanning Tree	
	IEEE 802.1w Rapid Spanning Tree	
	IEEE 802.1D Spanning Tree	
	IEEE 802.1x Authentication	
機能	α -Ring、GVRP、IGMP Snooping、NTP	
	14,880pps/10Mbps	
パケット転送能力	148,810pps/100Mbps	
	1,488,100pps/1000Mbps	
スイッチング容量	5.2Gbps	
パケットバッファ	256KB	
スイッチング方式	Store and Forward	
MAC アドレス登録数	8192	
フローコントロール	IEEE 802.3x (全二重)/バックプレッシャ (半二重)	
最大フレーム長	1536byte(VLAN Tag 含む)	
	RJ-45 10/100BASE-TX x4 ポート (Port1~6)	
Chlorinat	RJ-45 10/100/1000BASE-T x2 ポート (PortG1~G2)	
インタ Ethernet	Combo SFP 1000BASE-SX/LX/BX x2 ポート (PortG1~G2)	
フェース	ポート •DDM (Digital Diagnostic Monitoring)	
Console	RS-232 x1 ポート	
管理機能	CLI、SNMPv1,v2c,v3、TELNET、WEB-GUI	
寸法	(W)200 x (H)50 x (D)134mm(突起部含まず)	
重量	1.5kg (本体のみ)	

毒垢	電圧	DC47~55V
電源	適合電線範囲	AWG12~24
消費電力		17.7W (最大)
動作温度		-40∼+75°C
動作湿度		5~95%RH (結露なきこと)
保存温度		-40∼+85°C
保存湿度		5~95%RH (結露なきこと)
認定		FCC Part 15 Class A、CE Marking、WEEE、RoHS
		IEC60068-2-6 Fc (Vibration Resistance)
耐環境性認定	IEC60068-2-27 Ea (Shock)	
	IEC60068-2-32 Ed (Free Fall)	
	NEMA TS1/TS2	
付属品		パネルマウントキット x4、パネルマウントキット用ねじ x8、
וו 周山		RS-232 ケーブル x1

製品名	EX74162-0VT
	IEEE 802.3 10BASE-T
	IEEE 802.3u 100BASE-TX
	IEEE 802.3ab 1000BASE-T
	IEEE 802.3z 1000BASE-SX/LX/BX
	IEEE 802.3af Power over Ethernet
 規格	IEEE 802.3x Flow Control
्र अप्राप्त 	IEEE 802.1p CoS
	IEEE 802.1Q VLAN
	IEEE 802.1s Multiple Spanning Tree
	IEEE 802.1w Rapid Spanning Tree
	IEEE 802.1D Spanning Tree
	IEEE 802.1x Authentication
機能	α -Ring、GVRP、IGMP Snooping、NTP
	14,880pps/10Mbps
パケット転送能力	148,810pps/100Mbps
	1,488,100pps/1000Mbps
スイッチング容量	5.2Gbps
パケットバッファ	256KB
スイッチング方式	Store and Forward
MAC アドレス登録数	8192
フローコントロール	IEEE 802.3x (全二重)/バックプレッシャ (半二重)
最大フレーム長	1536byte(VLAN Tag 含む)
	RJ-45 10/100BASE-TX x4ポート (Port1~4)
	•IEEE 802.3af Power over Ethernet
A. 6. FIL. I	RJ-45 10/100BASE-TX x2ポート (Port5~6)
インタ Ethernet	RJ-45 10/100/1000BASE-T x2 ポート (PortG1~G2)
フェース	Combo SFP 1000BASE-SX/LX/BX x2 ポート (PortG1~G2) ポート
	DDM (Digital Diagnostic Monitoring)
Console	RS-232 x1 ポート
管理機能	CLI、SNMPv1,v2c,v3、TELNET、WEB-GUI
寸法	(W)200 x (H)50 x (D)134mm(突起部含まず)

重量		1.5kg (本体のみ)
電源	電圧	DC47~55V
	適合電線範囲	AWG12~24
消費	PoE 使用時	79.3W(最大)
電力	PoE 未使用時	17.7W(最大)
	給電方式	Alternative B
	最大 1ポートあたり	15.4W
	··· -	61.6W
動作温度		-40∼+75°C
動作湿度		5~95%RH (結露なきこと)
保存温度		-40∼+85°C
保存湿度		5~95%RH (結露なきこと)
認定		FCC Part 15 Class A、CE Marking、WEEE、RoHS
耐環境性認定		IEC60068-2-6 Fc (Vibration Resistance)
		IEC60068-2-27 Ea (Shock)
		IEC60068-2-32 Ed (Free Fall)
		NEMA TS1/TS2
付属品		パネルマウントキット x4、パネルマウントキット用ねじ x8、
		RS-232 ケ ー ブル x1

製品名	EX74262-0VT
	IEEE 802.3 10BASE-T
	IEEE 802.3u 100BASE-TX
	IEEE 802.3ab 1000BASE-T
	IEEE 802.3z 1000BASE-SX/LX/BX
	IEEE 802.3at Power over Ethernet
 規格	IEEE 802.3x Flow Control
承刊	IEEE 802.1p CoS
	IEEE 802.1Q VLAN
	IEEE 802.1s Multiple Spanning Tree
	IEEE 802.1w Rapid Spanning Tree
	IEEE 802.1D Spanning Tree
	IEEE 802.1x Authentication
機能	α -Ring、GVRP、IGMP Snooping、NTP
	14,880pps/10Mbps
パケット転送能力	148,810pps/100Mbps
	1,488,100pps/1000Mbps
スイッチング容量	5.2Gbps
パケットバッファ	256KB
スイッチング方式	Store and Forward
MAC アドレス登録数	8192
フローコントロール	IEEE 802.3x (全二重)/バックプレッシャ (半二重)
最大フレーム長	1536byte(VLAN Tag 含む)
	RJ-45 10/100BASE-TX x4ポート (Port1~4)
	•IEEE 802.3at Power over Ethernet
	RJ-45 10/100BASE-TX x2 ポート (Port5~6)
インタ Ethernet	RJ-45 10/100/1000BASE-T x2 ポート (PortG1~G2)
フェース	Combo 」。SFP 1000BASE-SX/LX/BX x2 ポート (PortG1~G2)
	ポート *DDM (Digital Diagnostic Monitoring)
Console	RS-232 x1 ポート
管理機能	CLI、SNMPv1,v2c,v3、TELNET、WEB-GUI
寸法	(W)200 x (H)50 x (D)134mm(突起部含まず)

重量		1.5kg (本体のみ)
電源	電圧	DC47~55V
	適合電線範囲	AWG12~24
消費	PoE 使用時	137.7W(最大)
電力	PoE 未使用時	17.7W(最大)
	給電方式	Alternative B
	1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30W
		120W
動作温度		−40~+75°C
動作湿度		5~95%RH (結露なきこと)
保存温度		−40~+85°C
保存湿度		5~95%RH (結露なきこと)
認定		FCC Part 15 Class A、CE Marking、WEEE、RoHS
耐環境性認定		IEC60068-2-6 Fc (Vibration Resistance)
		IEC60068-2-27 Ea (Shock)
		IEC60068-2-32 Ed (Free Fall)
		NEMA TS1/TS2
付属品		パネルマウントキット x4、パネルマウントキット用ねじ x8、
		RS-232 ケーブル x1

7. 製品保証

- ◆ 故障かなと思われた場合には、弊社カスタマサポートまでご連絡ください。
 - 1) 修理を依頼される前に今一度、この取扱説明書をご確認ください。
 - 2) 本製品の保証期間内の自然故障につきましては無償修理させて頂きます。
 - 3) 故障の内容により、修理ではなく同等品との交換にさせて頂く事があります。
 - 4) 弊社への送料はお客様の負担とさせて頂きますのでご了承ください。

初期不良保証期間:

ご購入日より 3ヶ月間 (弊社での状態確認作業後、交換機器発送による対応)

製品保証期間:

ご購入日より 3年間(お預かりによる修理、または交換対応)

- ◆ 保証期間内であっても、以下の場合は有償修理とさせて頂きます。 (修理できない場合もあります)
 - 1) 使用上の誤り、お客様による修理や改造による故障、損傷
 - 2) 自然災害、公害、異常電圧その他外部に起因する故障、損傷
 - 3) 本製品に水漏れ・結露などによる腐食が発見された場合
- ◆ 保証期間を過ぎますと有償修理となりますのでご注意ください。
- ◆ 一部の機器は、設定を本体内に記録する機能を有しております。これらの機器は修理時に 設定を初期化しますので、お客様が行った設定内容は失われます。恐れ入りますが、修理を ご依頼頂く前に、設定内容をお客様にてお控えください。
- ◆ 本製品に起因する損害や機会の損失については補償致しません。
- ◆ 修理期間中における代替品の貸し出しは、基本的に行っておりません。別途、有償サポート 契約にて対応させて頂いております。有償サポートにつきましてはお買い上げの販売店にご 相談ください。
- ◆ 本製品の保証は日本国内での使用においてのみ有効です。

製品に関するご質問・お問い合わせ先

ハイテクインター株式会社 カスタマサポート TEL 0570-060030

E-mail <u>support@hytec.co.jp</u> 受付時間 平日 9:00~17:00