A 社製品 と PTP650 スループット特性比較 Ver.02

1. PTP650 との比較のため、A 社製品, PTP650 双方の実質スループット特性に関して受信入力レベルを変化させて取得した。GUI 表示との比較、また、遅延に付いても測定比較した。

2. 試験結果

表-1 (周波数:5600MHz)

A 社製品 20MHz 帯域幅

設定値	RSSI		AP	->STN	STN>AP		AP<>STN 双方向			
[dBm]	表示		0.10%	表示	0.10%	表示	0.10%	遅延	ゆら	≝[msec]
[V+H]	AP	STN	[Mbps]	[Mbps]	[Mbps]	[Mbps]	[Mbps]	[msec]	max	min
-62	-68	-69	96.5	95.6	95.2	95.6	50/49	2.6	0.15	-0.24
-64	-70	-72	96.0	95.5	95.2	95.6	50/49	2.6	0.65	-0.6
-66	-72	-73	85.1	95.4	93.8	95.6	45/44	2.8	2.6	-2.6
-68	-74	-75	70.0	91.8	79.0	95.4	40/39	2.6	2.8	-2.5
-70	-76	-77	57.0	75.7	64.1	88.8	32/31	3.5	13	-5.2
-72	-77	-79	55.0	60.7	56.5	75.5	28/27	3.9	60	-60
-74	-80	-81	55.0	56.7	56.2	57.1	28/27	2	2.8	-3
-76	-81	-83	37.0	55.3	54.2	56.8	20/20	3.2	21	-19
-78	-83	-84	37.0	37.9	36.5	53.5	20/20	2.6	2	-3.1
-80	-84	-85	28.2	34.4	27.6	37.7	15/15	3.9	53	-9
-81	-85	-86	28.0	28.5	27.6	36.9	15/15	2.7	1.6	-1.7
-82	-86	-87	28.0	28.1	28.0	28.8	15/15	2.6	2.9	-3
-83	-87	-88	28.0	28.1	28.0	28.2	15/15	3.9	5.3	-6.7
-84	-87	-88	26.0	27.5	27.6	28.1	13/13	32.3	53	-42
-85	-89	-89	25.0	23.8	24.6	27.4	10/10	12.2	19	-18
-86	-89	-90	19.1	19.2	18.7	24.8	10/10	4	9.5	-7.9
-87	-90	-90	19.0	19	18.0	19.7	9/9	7.8	5.4	-4.8
-88	-90	-90	19.1	18.3	18.8	19.0	9/9	2.8	4.1	-6.2
-89	-90	-91	10.0	15.8	8.7	18.3	5/5	5	21	-27
-90	-91	-91	8.0	12.1	8.8	16.5	5/5	280	3.1	-13
-91	-92	-91	8.0	9.5	8.8	9.8	5/5	950	4.3	-10
-92	-92	-91	8.0	9.5	8.8	9.6	4/4	9.8	3.2	-3

(A 社製品は内蔵アンテナのため、アンテナを取り外し、出力を可変減衰器に接続した。) 灰色部分は、漏れのため信頼性に欠ける。

(パケット損失率 0.1%は測定器 Access One Tester1071A による。)

表—2 A 社製品 40MHz 帯域幅

設定値 [V+H]	RSSI		AP	->STN	STN -	>AP	AP<	->STN 双方	向	
[dBm]	表示		0.10%	表示	0.10%	表示	0.10%	遅延	ゆら	≝[msec]
	筑波	霞ヶ 浦	[Mbps]	[Mbps]	[Mbps]	[Mbps]	[Mbps]	[msec]	max	min
-62	-67	-70	167.0	198	168.0	198.0	79/79	1.7	2.5	-2.5
-64	-70	-73	148.0	193	168.0	198.0	79/79	2.5	7.6	-8.6
-66	-72	-75	109.0	157	148.0	185.0	70/70	58	22	-21
-68	-74	-78	108.0	118	118.0	153.0	65/65	60	2	-4
-70	-77	-80	79.0	118	100.0	118.0	50/50	29	37	-40
-72	-81	-84	69.0	78	69.0	80.0	40/40	3.4	8.5	-10
-74	-83	-87	59.0	59	59.0	59.0	35/35	2.9	7	-7
-76	-84	-89	38.0	47	38.0	55.0	30/30	2.2	1.2	-1.3
-78	-85	-90	20.0	33	20.0	38.0	10/10	2.4	20	-1.7
-80	-85	-91	20.0	19	18.0	19.0		SYNC O	UT	
-81	SYNC OUT									

まず、A 社製品について測定結果を表-1 (20MHz BW), 2 (40MHz BW)に載せる。

内蔵アンテナを外すと基板がむき出しとなり、漏れのため-83dBm から下のレベルでは RSSI が変化しにくくなっている。(金属布で覆ったが、たいして効いていない。)

20MHz で 100Mbps, 40MHz で 200Mbps の伝送容量がある建前で、20MHz では確かにレベルが高いと (64QAM) 片方向 95Mbps と高い伝送レートが得られている。

また、20MHz BW では -90dBm から伝送レートが下がらないのは、漏れによるものと思われる。 レベルを変えても伝送レートが変わらない部分があるのは、ある変調(64QAM, 16QAM, QPSK, BPSK) を維持出来ているためである。

40 MHz では高い受信レベルのとき 200 Mbps の筈が実質 168 Mbps しか出ていない。また動作が不安定に感じた。感度は-80 dBm 位で同期はずれを起こしているので、20 MHz BW では、漏れがなければ $-83 \sim 85 dBm$ 位で同期はずれになると思われる。また、40 MHz BW は-76 dBm 位から 20 MHz よりも伝送レートが低くなっている。これは、帯域幅が倍になり、その分、雑音が倍となり、結果的に SNR が下がり、あるレベルから 20 MHz BW と同じ変調を維持出来なくなったからである。

RSSI表示は実測値よりも 6~7dB 低くでている。工場での Calibration が正しく行われていないか、設計上の限界と思われる。伝送レートの表示は、単にある RSSI での理論値からソフト計算での値と思われる。

表-3 (周波数:4940MHz)

PTP650 20MHz 帯域幅 Tx:Rx = 1:1

設定値 [V+H]	RSSI		Master >Slave		Slave >Master		Master<>Slave 双方向			
[dBm]	表示		0.10%	表示	0.10%	表示	0.10%	遅延	Mini-	≝[msec]
[dDili]	Slave	Master	[Mbps]	扱か [Mbps]	[Mbps]	[Mbps]	[Mbps]	生 <u>难</u> [msec]	max	min
			-		-	_	<u> </u>			
-62	-63.0	-62.2	96.7	100	96.7	100.0	94/94	2.1	0.6	-0.7
-64	-64.9	-64.1	83.5	84	96.6	100.0	82/82	1.9	0.4	-0.3
-66	-67.2	-66.2	67.1	68	67.1	84.0	67/67	1.7	0.7	-0.5
-68	-69.0	-68.2	67.1	68	67.1	68.0	67/67	1.7	0.7	-1.3
-70	-71.0	-70.7	52.3	53	67.1	68.0	52/67	1.6	1	-1.5
-72	-73.0	-72.7	39.5	38	52.3	53.0	39/52	1.7	31	-17
-74	-75.1	-74.8	37.5	38	52.3	53.0	37/52	1.5	1.3	-0.8
-76	-77.1	-76.6	37.5	19	38.2	38.0	37/37	1.5	1.2	-0.8
-78	-78.8	-78.4	18.7	19	37.5	38.0	18/37	1.6	1.4	-1
-80	-80.4	-80.3	18.7	19	19.1	19.0	18/18	1.8	1.3	-0.9
-81	-81.1	-81.1	18.7	19	18.7	19.0	18/18	4	10	-17
-82	-82.2	-82.4	14.8	19	18.7	18.0	13/13	1.8	1.4	-1.4
-83	-83.2	-83.5	12.1	18	14.8	13.0	12/12	1.3	1.7	-1.7
-84	-83.7	-84.6	9.5	13	11.8	10.0	9/11	2	1.4	-1.4
-85	-84.3	-85.2	8.9	13	11.8	9.0	9/9	11	84	-18
-86	-85.0	-86.1	8.9	9	9.5	9.0	9/9	2.3	1.4	-1.4
-87	-86.0	-87.1	8.9	9	8.9	9.0	9/9	2.3	1.4	-1.4
-88	-86.1	-87.8	8.8	9	8.8	9.0	4/4	3	1	-1.7
-89	-87.2	-88.2	4.8	4.8	8.8	9.0	4/4	3	0.3	-1.7
-90	-86.7	-89.1	4.8	5.7	6.9	9.0	4/4	3.1	0.3	-1.7
-91	-87.6	-89.7	4.8	4.8	4.8	4.8	4/4	3	0.3	-1.7
-92	-88.3	-89.8	3.9	4.8	3.9	4.8	4/4	3	0.3	-2
-93	-88.5	-89.7	3.9	4.8	3.9	4.8	4/4	3	0.3	-1.7
-94					SY	'NC OUT	I		I	1

PTP650 は Tx:Rx = 1:1, 20MHz BW の状態で測定した。

RSSI は 1dB くらいの誤差で非常に正確である。伝送容量も 200Mbps (256QAM)最大なので、双方向で 94Mbps/94Mbps 出ており良好である。 Tx:Rx=3:1 にすれば 3*200/(3+1)=150Mbps 得られ、A 社製品と 同じ位になる。伝送レート表示はほぼ実測値を表しており、これは常に疑似データを送っており伝送レート をソフト上実測表示しているからと思われる。

所々表示と実測が違うのは、一度、測定機側にイーサネットケーブルを接続し全レベルで測定し、次に PC 側に接続して URL 表示のデータを測定した為、多少タイミングの差があるからと思われる。

特筆すべきは感度の高さで-93dBm まで受信できている。これは長距離通信には必須である。RSSI の確度、変調のスムース差、表示の正確さと相まって、また、屋外でも 256QAM が可能なことは性能の良さ (雑音

レベルの低さ)を表している。これはユーザーに対して優れたセールスポイントとなろう。

また、A 社製品と比較して、-70dBm 以下では明らかに伝送容量が高くなっている。 RSSI レベルと伝送レート(各変調)の関係は、ほぼカタログ値と合っている。

表─4
AP (Master) ←------→ Station (Slave)

設定値		PTP650	A 社製品	A 社製品	
[V+H]		P1P000	(20MHz)	(40MHz)	
[dBm]		0.10%	0.10%	0.10%	
		[Mbps]	[Mbps]	[Mbps]	
	-62	94/94	50/49	79/79	
	-64	82/82	50/49	79/79	
	-66	67/67	45/44	70/70	
	-68	67/67	40/39	65/65	
	-70	52/67	32/31	50/50	
	-72	39/52	28/27	40/40	
	-74	37/52	28/27	35/35	
	-76	37/37	20/20	30/30	
	-78	18/37	20/20	10/10	
	-80	18/18	15/15	NA	

遅延、揺らぎについては、双方向送らないと表示されない。

また、無理に伝送容量ぎりぎりまで(たとえ 0.1%損失率でも)設定すると、数 100msec まで遅延、ゆらぎが増すことがわかったので、送るデータに余裕をもたないと遅延が増えてくる。例えば表-1で-90、-91dBmで 280msec 950msec なのは片方向 8~8.8Mbps しか送れないのに双方向 5M/5Mbps としたことによる。これを 4M/4Mbps とすれば通常の数 msec オーダーになったと思われる。

また表-1の 20MHz BW A 社製品の数ポイントで実測スループットと表示が異なっているが 40MHz BW では半分以上のレベルで異なっている。特にレベルが高い方は全く異なっている。

これに比べて PTP650 (表一3)ではほぼ全レベルで実測値と表示が合致している。このことはユーザーに安心感を与えられるセールスポイントになると思われる。

GUI の印象であるが、A 社製品は、馴染みやすく使いやすい印象を受けた。PTP650 はいかにもプロ向けという印象を受ける。

以上